京公网安备 11010802034615号
经营许可证编号:京B2-20210330
解读诺贝尔奖“大”数据:想获奖先搬家
2015年的诺贝尔奖已经公布,咱们中国的女科学家屠呦呦获奖,真是举国振奋的好消息。
众所周知,诺贝尔奖的设立,对物理学、化学、医学的发展起着重要的激励作用。自1901年诺贝尔奖首次颁发到2014年为止,在过去114年中,已经有889位来自物理、化学、生理/医学、经济学、文学等方面的杰出人士获奖。他们的研究成果影响着世人,改变着世界,为当今科学的进步做出了巨大的贡献。
“中奖”虽然绝非易事,但也有规律可循。获奖者都有哪些相似点呢?都来自什么地方?下面我们就通过一张图试着分析下规律。
图片来源于意大利Accurat studio(http://www.accurat.it/)
这是一张记录了在1901年到2012年期间每一位获奖者信息的图片,包括了获奖年份,研究领域、所在机构以及学术方向。
看起来很复杂?且听小编下文分解。
首先总体来看,这张图的X轴代表获奖年份,Y轴代表获奖者的年龄,具体可以看上图的图例。图例上标示了所有获奖者的平均年龄,以及每个奖项获奖者的平均年龄。甚至标注了每一年每一位奖项颁发的人数,学历、性别以及获奖的时候所在大学的具体情况。
在名校工作的获奖者更多
由这张图可以看出,获奖者最多的七所大学分别是哈佛大学、麻省理工学院、斯坦福大学、加州理工学院、剑桥大学以及加州伯克利分院。这些都是世界名校,能进去其中工作的人都是领域内的佼佼者,而且这里不仅有优越的研究条件,还有优秀的合作伙伴,获奖者多也并不意外。
不仅要有成果,还要长寿
再来看获奖者的平均年龄,我们以化学奖来举例,所有获奖者的平均年龄为59岁,但化学奖获得者平均为57岁,不过近年来获奖人士的年纪普遍超过了平均年龄。这一方面是因为科学家们真的是“老骥伏枥,志在千里”,另一方面也是因为诺贝尔奖越来越倾向于“让时间先来检验成果”,这种趋势也带来了一些遗憾,给某个成果颁奖时,这个成果的核心人物已经去世了。
科学与性别无关
获奖者有男性也有女性,在这张图中都有统计数据,但这仅仅是为了统计之用。虽然目前来看,女性获奖者少于男性获奖者,但这背后有着复杂的社会因素,近年女性科学家们越来越杰出的表现已经说明了,其实性别并不重要,科学并没有国家、血统以及性别之分,只要在其领域中做出了卓越贡献就可以获奖。
想获奖?先搬家
你想获奖吗?那先搬家吧。这张图片还统计了获奖者的居住地,看来想获奖还得选地方啊。图中显示住在纽约的获奖者最多,有51人。位居次席的是巴黎,有23人之多,巴黎人不只浪漫,还是盛产诺奖的城市啊。怎么样,心动了吗?走,咱去巴黎吧。
团结就是力量
你知道诺贝尔奖可以几人共同分享吗?其实这种情况挺多的,在图中也有显示,那么究竟有多少呢?诺奖颁发了多少次呢?我们从诺贝尔奖的官方网站找到了相关数据。
获奖者多为博士
最后来看看获奖者的学历。由这图中可以看出,虽然在各个领域里获奖者以博士学历者居多,但也有以硕士、学士学历获奖的,这里边的差异是因为有些学科,硕士学位就可以了,不一定要博士学位才有更好的发展。在诺贝尔文学奖中,这一情况则不同。文学奖是比较特别的奖项,跟获奖人的学术高低无关,只跟你的作品有关,所以很多获奖者根本没有学位,而且没有学位的获奖者甚至占多数。还有一个奖项也是这样的情况,这就是诺贝尔和平奖。
从这张图中看,你会发现有些获奖者甚至很年轻,甚至还是个孩子,自然也没有学位了。例如2014年诺贝尔和平奖的获得者之一巴基斯坦女孩马拉拉当时才17岁,颁奖词称赞其“反抗针对儿童和年轻人的压迫,捍卫了儿童受教育的权利”。
居里夫人
图中还有特殊的注解,例如居里夫人是第一个两次获得诺贝尔奖的获奖者;简?丁伯根和尼可拉斯?丁伯根是唯一两兄弟都获得诺奖的亲兄弟,分别是经济学奖和医学奖。闻名世界的无线电之父马可尼是唯一一个没有学位的物理学获奖者。
简?丁伯根和尼可拉斯?丁伯根兄弟
2015年的诺贝尔奖已于10月5日至9日陆续发布,感兴趣的朋友也可以看看,今年的获奖者们是否吻合这张图中的规律。
最后,感谢科学进步对人类发展的推动,感谢获奖者们为世界做出的贡献。
注:
1、多次获奖的获奖者:居里夫人是第一个获得过两次诺贝尔奖的人(化学和物理)。
2、年纪最长的获奖者:莱昂尼德?赫维奇获奖的时候90岁。
3、最年轻的获奖者:威廉?劳伦斯?布拉格获奖时25岁(这个图表只到2012年,2014年巴基斯坦女孩马拉拉17岁获得和平奖)。
4、兄弟获奖:简?丁伯根和尼可拉斯?丁伯根是唯一两兄弟都获得过诺奖的亲兄弟(分别是经济学奖和医学奖)。
5、没有学位的获奖者:马可尼是唯一一个没有学位的获奖者(特指物理学奖)。
6、去世后获奖者:埃利克?阿克塞尔?卡尔费尔德(瑞典人)是唯一一个去世后获奖的人。
7、第一个女性经济学奖获得者:埃莉诺?奥斯特罗姆,是第一位也是唯一一位获得诺贝尔经济学奖的女性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22