京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代信息安全问题待解
对海量数据的分析挖掘能创造巨大的物质财富和社会价值。然而,数据的大量聚集导致隐私泄露无处不在,个人、企业的信息安全面临严重威胁,亟待通过完善法律法规等方式予以解决。
“大数据”产业蕴藏巨大潜力
大数据的价值不可估量,被誉为未来世界的“石油”。企业通过对海量数据的分析挖掘,能从中发现商机,清晰掌握客户需求,准确锁定目标客户。
2013年,美剧《纸牌屋》的成功,让全世界都意识到了大数据的力量。《纸牌屋》的出品方N etflix仅在当年第一季度就新增300多万用户,半年之内股价涨幅超三倍。这是因为《纸牌屋》是从3000万付费用户的收视选择、400万条评论、300万条搜索记录中总结收视习惯,根据对用户喜好的精准分析进行创作的。
“大数据产业蕴藏着巨大潜力,能创造巨大的物质财富。”梦芭莎集团董事长佘晓成说,“每个企业都应该打造自己的数据库,大数据技术让我们在生产过程中就能进行及时调整,使用大数据技术后,库存售罄率从80%大幅提升到95%。
大数据不仅能创造物质财富,还能创造社会价值。中国工程院院士邬贺铨表示,海量的交通信息、社保信息、消费记录、地理信息等掌握在政府部门、通信运营商、互联网企业等机构手中,将成为解决交通拥堵、雾霾、看病难、食品安全等问题的利器,以及政府了解社情民意的重要窗口。
信息安全成发展主要障碍
记者调研发现,尽管大数据蕴藏巨大潜力,但也给个人、企业的信息安全带来巨大风险,信息安全问题已成为产业发展的主要障碍。
首先,大数据时代,隐私信息将“无处遁形”,公民个人将面临安全风险。信息安全专家、南京瀚海源信息科技有限公司首席执行官方兴说,大数据分析的前提是海量的数据,只要连接到网络,公民的姓名、身份证号、手机号码、银行账号密码、位置信息等隐私数据都会在其不知情的情况下被全部抓取,现行法律法规并未对此类行为作出任何规定。
“无处遁形”的隐私信息和大数据分析的广泛使用,将给公民个人带来巨大的安全风险。国际关系学院信息科技系副主任王标说,大数据时代,个人隐私数据越来越多地被连接和分析,公民的账号密码、手机号码、身份证号等敏感信息会被不法分子轻易获取,为账户盗刷、诈骗、抢劫等犯罪打开方便之门。
其次,大数据时代,数据的大量聚集大大增加了大规模数据泄露事件发生的可能,企业的信息安全也面临严重威胁。
世界知名信息安全厂商赛门铁克近日发布报告称,随着大数据时代的到来,2013年超过5 .52亿条个人身份信息被泄露,泄露数据的数量是2012年的4倍,大规模泄露事件从2012年的1起增加到8起,每一起事件泄露的信息都超过千万。
方兴说,大数据时代,保存海量数据的企业极易引来黑客攻击,因为数据的大量汇集使得黑客一次攻击就能获得大量有效数据,加之企业的信息安全意识有待提高,一旦发生数据泄露,不仅给用户带来安全风险,对企业声誉、经济效益也是重大打击。
应制定产业“游戏规则”
受访专家建议,国家宜根据大数据的特点,及时完善相关法律法规,制定大数据时代的“游戏规则”。同时,要建立企业信息泄露问责机制,倒逼企业用户加强信息安全防护,促进大数据产业健康发展。
王标、方兴等专家建议,应通过完善法律法规,制定大数据时代的“游戏规则”。一是对企业如何保护收集来的个人隐私做出明确规定;二是企业如何使用收集到的个人隐私必须提前告知用户;三是对于用户个人而言,必须要有数据的准入权、删除权和修改权。
同时,艾媒咨询首席执行官张毅表示,近两年我国携程网、如家快捷酒店等多家企业曾发生大规模数据泄露事件,却从未见到企业负责人被问责。按照美国的法律,企业发生一次信息泄露事件就可能被罚得倾家荡产。“必须建立严格的问责机制,加大对涉事企业的处罚力度,倒逼企业加强信息安全防护。”张毅说。
此外,专家表示,在大数据时代,公安部门也应与时俱进,增强侦破能力,只有让利用大数据技术实施犯罪的人被绳之以法,才能真正威慑不法分子,为个人、企业的信息安全保驾护航。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06