
大数据时代:投资布局四维开拓
经过多年的积累,大数据已经成为智慧星球的重要资产,通过对大数据资源的开发,“互联网+”才能水到渠成。而从对大数据的投资布局看,它们已经兵分多路,对占据大数据资源的诸多企业进行了前瞻性的布局。
据报道,全国两会上热议的“互联网+”战略,从去年余额宝的推出就开始受到了关注。通过对用户行为进行数据分析,进行投资错配博取高收益,让余额宝一鸣惊人,并掀起席卷市场的货币基金浪潮,由此引爆的固定收益类产品示范效应,点燃了基金公司开发大数据权益类产品的热情。
目前,全球所有的通信运营商本质上已经是大数据公司,大数据已经成为通信运营商最核心的资产,未来大数据的价值挖掘及变现将会得到充分利用,这将造就千亿级以上的市场,相应的也会诞生大量的投资机会。
从对大数据的投资情况看,有以下四个重点投资布局:
首先是政府部门积累的大数据。譬如,拥有纳税信息的航天信息,在2014年底吸引186家机构抱团入驻;为国家有关部门提供计算机信息服务的太极股份,吸引了88家机构密集布局,为人力资源和社会保障提供自助服务一体机服务的易联众,吸引了15家机构持有等。
第二个掌握大量数据的是金融部门。目前,银行占有巨大的数据资源,如果这些数据资源得到充分开发,银行的估值体系将得到很大提升。
第三个重要的大数据资源来源于通信运营商。譬如,从事移动转售业务并发力移动互联的天音控股,被37家机构同时持有;在通信网络管理领域有优势的亿阳信通,也被31家机构同时持有,其中不少基金为2014年四季度新近入驻。
第四个核心的大数据资源是商业数据。数据显示,目前有多达69家机构持有上海钢联,持有怡亚通的机构也高达61家,而与阿里巴巴等平台合作的公司都被赋予了较高的估值
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30