
支付宝是如何利用大数据分析进行交易风险管控的
作为一个支付平台面临多重风险,例如系统攻击、盗用、欺诈、套现、洗钱等,支付宝是国内最大的第三方支付平台,面临的风险更为严峻。
在支付宝内部主要负责盗用风险和欺诈风险防范的王维强(茂深),带领团队依托支付宝海量数据通过大数据模型对支付宝生态内的各类风险进行分析挖掘,研究出了一套保障支付宝体系内的账户、交易安全的方法论。
在今日的2015中国互联网安全大会(ISC2015)上,蚂蚁金融服务集团安全&服务&数据事业群高级安全专家王维强阐述了支付宝如何基于大数据分析进行交易风险管控。
支付宝风控系统的“安全大脑”
先来看看支付宝正常的风险管控流程,王维强指出,“当用户有交易请求或登录钱包的请求,这些数据、动作会先在支付宝钱包里面送到服务器做一个数据转换,然后结合历史信息等被综合发给‘安全大脑’,安全大脑对这个交易请求进行风险判断,如果这个风险是低风险,用户会通过授权,交易成功。如果安全大脑判定这个请求有一定风险,它会发出验证挑战,通过问一些私密问题等手段来证明‘你是你自己’。如果通过这个挑战,就判定这是一个正常的行为,否则就证明这个请求有风险并进行核查。”
安全大脑的工作是非常有必要性的,据王维强介绍,在支付宝平台能碰到很多盗用者通过技术手段偷取了用户的卡信息、身份信息等在支付宝平台销赃,并且随着技术的进步,这些风险形式会变得越来越多样化、作案手段愈加复杂化等问题。
在蚂蚁金服里的支付场景非常多,打开支付宝钱包会看到有AA收款、转帐、红包、生活缴费等,场景的复杂意味着资金风险管控的复杂化。所以,全方位的风险识别来进行风险的管理尤为必要。
安全大脑的作用非常明显,这要求它对风险识别的高精准性。
“安全大脑主要通过帐户、设备、位置、习惯、关系行为等多种纬度进行综合的判断。值得一说的是,安全大脑过去对风险的判断基本上是基于消费者的操作行为进行判断,用户的帐户、设备、位置、关系都是基于密盾、密码验证来验证帐户是否本人。随着技术发展,盗用者的技术也会越来越高明。他们会通过各种手段隐藏自己的设备、位置,并会做出各种各样的帐户来销赃。”
这时如何解决这些新问题,王维强表示,安全大脑通过大数据的分析来建立一些模型,进行更多的判断。密码和证书、支付盾转化为支付识别通过大数据的方法进行风险判断。大数据和生物识别是相辅相成的,生物识别里面讲的是通过红膜职别、身份识别、人脸识别。它背后的支持也是大数据的方法。这些东西加在一起,让支付宝风控的概率低于百万分之一左右。
支付宝的生物识别
在生物识别方面,王维强介绍了支付宝的人脸识别和指纹识别技术。今年三月,马云在德国CeBIT展上,演示了蚂蚁金服的Smile to Pay扫脸技术,并从淘宝上购买1948年汉诺威纪念邮票。“2015年的最新性能,整体识别指标准确率达到99.6%以上。”
除了人脸识别,设备指纹识别并不陌生,王维强指出,简单的说,支付宝的风控是通过在客户端标记设备、在服务端认证设备达到设备指纹识别的安全可控。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30