京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用R语言统计用户登录信息
#设置统计时间段 格式: yyyy-mm-dd-hh-mm-ss
#如: 2013-09-10-00-00-00
start.time = "2013-09-01-00-00-00"
stop.time = "2013-10-13-00-00-00"
#伪装用户名
fake = T
library(lattice)
file = "login.log"
lines = readLines(con=file)
data = NULL
in.time = NULL
ch2d = function(x=NULL)
{
if(x=="Jan") return(1)
if(x=="Feb") return(2)
if(x=="Mar") return(3)
if(x=="Apr") return(4)
if(x=="May") return(5)
if(x=="Jun") return(6)
if(x=="Jul") return(7)
if(x=="Aug") return(8)
if(x=="Sep") return(9)
if(x=="Oct") return(10)
if(x=="Nov") return(11)
if(x=="Dec") return(12)
}
for( i in lines)
{
if( grepl(pattern="still",x=i)
| grepl(pattern="reboot",x=i)
| grepl(pattern="tty",x=i)
| grepl(pattern="wtmp",x=i)
| grepl(pattern="crash",x=i)
| grepl(pattern="down",x=i)
| i=="")
next
tmp = unlist(strsplit(x=i,split=" "))
tmp = tmp[tmp!=""]
tmp[10] = gsub(pattern="\\(",replacement="",x=tmp[10])
tmp[10] = gsub(pattern="\\)",replacement="",x=tmp[10])
tmp = c(tmp,unlist(strsplit(x=tmp[7],split=":")),unlist(strsplit(x=tmp[9],split=":")))
if(length(unlist(strsplit(x=tmp[10],split="\\+")))==2)
{ http://cda.pinggu.org/view/4496.html
day = unlist(strsplit(x=tmp[10],split="\\+"))[1]
tmp[10] = unlist(strsplit(x=tmp[10],split="\\+"))[2]
} else day = 0
hour = unlist(strsplit(x=tmp[10],split=":"))[1]
min = unlist(strsplit(x=tmp[10],split=":"))[2]
time = as.numeric(day) * 24 * 60 + as.numeric(hour) * 60 + as.numeric(min)
in.time = c(in.time,time)
rm(time)
data = rbind(data,tmp)
}
login.time = ISOdatetime(year=2013,month=lapply(X=data[,5],FUN=ch2d),day=data[,6],hour=data[,11],min=data[,12],sec=0)
rownames(data) = 1:nrow(data)
data = data.frame(data[,c(1,3:6,11,12)],in.time)
colnames(data) = c("user","IP","week","month","day","hour","min","time")
# 筛选统计时间段
start.time = as.numeric(unlist(strsplit(x=start.time,split="-")))
stop.time = as.numeric(unlist(strsplit(x=stop.time,split="-")))
start.time = ISOdatetime(year=start.time[1],month=start.time[2],
day=start.time[3],hour=start.time[4],
min=start.time[5],sec=start.time[6])
stop.time = ISOdatetime(year=stop.time[1],month=stop.time[2],
day=stop.time[3],hour=stop.time[4],
min=stop.time[5],sec=stop.time[6])
data = data[login.time>=start.time&login.time<=stop.time,]
print(paste(nrow(data),"records after filter."),quote=F)
#伪装用户名
if( fake == T )
{
# fake.name = matrix(sample(100:120,length(levels(data$user))*9,replace=T),ncol=9)
# fake.name = apply(fake.name,1,function(x)paste(intToChar(x),collapse=""))
fake.name = rep("",length=nrow(data))
for( i in unique(data$user))
{
fake.name[data$user==i] = paste(intToChar(sample(100:120,9)),collapse="")
}
data = cbind(data,fake.name)
data = data[,c(9,2:8)]
}
colnames(data) = c("user","IP","week","month","day","hour","min","time")
#统计每个用户登录时间数
time.per.user = data.frame(user=character(),time=numeric())
for( i in unique(data$user))
{
time.per.user = rbind(time.per.user,data.frame(user=i,time=sum(in.time[data$user==i])))
}
time.per.user = time.per.user[order(time.per.user$time),]
tp1 = barchart(time~user,time.per.user,scale=list(x=list(rot=90)),ylab="Time(minutes)")
#统计局域网外的ip登录数
IP.info = data$IP
IP.info = IP.info[!grepl(pattern="^10",x=IP.info)]
IP.info = IP.info[!grepl(pattern="^192",x=IP.info)]
IP.info = IP.info[!grepl(pattern="cu",x=IP.info)]
IP.info = IP.info[!grepl(pattern="io",x=IP.info)]
IP.info = IP.info[!grepl(pattern=":",x=IP.info)]
print(paste(" IP counts :",length(unique(IP.info))),quote=F)
#统计不同用户使用不同ip登录次数
tp2 = histogram(IP~user,data,scales=list(x=list(rot=90)))
plot(tp1,split=c(1,1,1,2))
plot(tp2,split=c(1,2,1,2),new=F)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26