
中小卖家利用大数据不在概念在操作
电商行业现在已是人人开口必讲大数据,运营者自以为有大数据支持便可预测用户行为、找到精准用户以期实现销售的几何倍数增长。但对于绝大多数的中小卖家而言,大数据更多时候如同镜花水月一般,看着诱人实则无法去利用。诚然,一方面卖家只能获得基础订单数据信息,其数据维度之小是难以称得上是大数据的;而另一方面中小卖家的经营模式也不太可能引入专业的数据分析师。
如何将数据进行共享且进行简单化操作是当前中小卖家最迫切需要的。
此前以淘宝为代表的电商平台在平台大数据方面所做工作很多,如码上淘产品在搜集用户信息以及平台进行精准化营销方面做了大量工作。铁哥认为,此是平台方在与用户之间的大数据关系的建立,系统通过用户数据匹配最精准需求,提高营销精准度。
而对于无数的卖家而言,自己依然无法实际操作大数据,换句话说卖家方面对于大数据更多还是跟从平台脚步,自己鲜有动作通过大数据拉新,提高成交量。如何让卖家有选择性的通过平台数据共享机制获得营销效果,是电商平台需要迫切解决的。
不久前阿里妈妈“阿里魔镜”项目上线限时内测,铁哥作为卖家一员测试以为对于卖家确实解决了长期以来无法利用大数据的难题。
其一,大数据不再枯燥
大数据是个极其枯燥的学科,其基本包括:数据搜集、筛选、建模、解读、运用等环节,非有数学专长根本无法开展。这也是即便将数据共享给卖家也无法完全运用的根本原因。
而在该产品中,卖家不需要对数据中间的处理过程负责,只需要一键便可完成大数据运用的多个环节,直接进入运用阶段。
这最大程度上减轻了卖家对数据运用的恐惧程度,傻瓜式的操作方式对大数据的运用普及贡献极大。
其二,精准解决商家拉新需求
电商卖家日常最重要无非三件事:1.运营2.留客3.拉新。前两者可通过店铺现有工具和营销方式基本可实现,而对于拉新往往过多依赖于现有营销工具,尚未把大数据完全利用起来。其中以往营销产品过多集中于对某个产品或同类产品的相关用户进行潜力挖掘,难以称得上是真正的大数据运用。
而“阿里魔镜”则不同,本质上其核心方法是将以广告主的已购用户为种子用户,为广告主找到潜在客户,潜在客户经过广告触达后,购买了广告主的商品,成为了已购用户。然后对已购用户再进行分层管理,持续拉新,持续维护老客户。也就意味着以往是基于店铺以及商品属性进行的精准营销,将直接升级为基于产品和目录认知的精准营销。可有效解决商家拉新的问题。
其三,基于大数据的算法营销注定是风口
此前广告业的广告投放模式相对粗放,有完全基于展示的,亦有根据简单cookie所认为的精准营销,当然也有简单的基于购买以及浏览习惯,常见为用户购买某产品后部分广告平台仍然推荐该产品。数据运用的粗暴以及缺乏预测性,是传统网络广告行业发展最大瓶颈。
而基于大数据的算法营销则是完全依据多维度多数据量的大数据,以科学数学模型为手段,精准找到最具有购买潜力的用户,进行精准化营销。在寻找精准用户时并非完全依据大数据,而是依据单一或者较少维度数据进行,其精准营销效果往往大打折扣。而此次“阿里魔镜”产品是阿里妈妈方面在基于大数据的算法营销方面的一次领先尝试,对于中小卖家而言通过该产品不仅可提高店铺转化量且由于属于更为精准营销,也可降低店铺运营成本,尤其在拉新方面的投入。整个网络广告界草创阶段的粗暴做法也行将结束,类似“阿里魔镜”这般算法营销将注定成为主流。
但铁哥也提醒大家,切不可被同类概念忽悠,平台做算法营销要基于三大要素:1.用户量大2.产品线广,用户行为多,数据维度多3.有交易闭环行为。如此,平台获得的数据才是真正大数据,其营销也才称得上的是精准营销,这也是阿里能够率先采用此类手段的重要原因。
最后建议中小卖家少听所谓大师的大数据运用手段,离开平台的大数据都是忽悠。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01