
大数据入场互联网金融摆脱草莽
互联网金融发展至今,坏账一直是其挥之不去的阴影,2014年,全国P2P问题平台达275家,同比增长260%;行业平均坏账率8%,为银行的8倍。坏账率过高已经成为整个互联网金融行业发展的最大障碍。铁哥此前接触过各地不同形式的互联网金融平台,深感这是一个鱼龙混杂亟需完全科学化改造的行业。甚至部分互联网金融平台是与黑社会相伴的一半魔鬼一半天使的人格分裂型平台。
表面P2P暗里黑社会
部分互联网金融公司做P2P业务,表面看是完全互联网化的操作方式,用户线上注册提交信息以及融资需求,认定融资成本,便可较为便捷地获得资金。
但其中问题在于,相当部分的用户由于诚信度以及履约能力较差,被银行业拒之门外之后转投互联网金融平台,而多数互联网金融平台由于缺乏征信体系以及相关数据支持,无形中加大了平台的坏账风险。
当用户产生履约难问题之后,一些平台会将债务转移至其关联公司,于是用户与平台的债务关系便成为用户与关联公司的债务关系,由于用户欠款已由关联金融公司垫付也无形中拉低了互联网金融平台的坏账率。如果用户继续履约难,一些关联公司便要使用社会力量——黑社会前来追缴。
由于黑社会是由关联公司所找,互联网金融平台无太大责任,可以继续以互联网思维为借口站在风口。但其中难以回避的事实为平台方与黑社会的关系是你中有我的。而即便有社会催债力量协助,互联网金融平台也难以摆脱坏账噩梦,社会力量多在某地区有影响力,用户跑路坏账在所难免。
相当部分P2P平台由于缺乏相关数据支持,无法事先甄别用户,使得坏账根本无法避免,而社会催债力量又将整个行业拉低至极其草莽阶段,这都是不利于行业健康有序发展的。
互联网金融重点在征信数据
互联网金融行业要真正规避风险,仅靠黑社会是完全不行的,铁哥以为利用大数据的征信平台才可真正规避风险。7月10日,在玖富主办的互联网金融创业大赛杭州赛区,玖富以及芝麻信用的专家及管理人员对互联网金融的征信问题表达相当深刻的见解。而铁哥根据现场信息以及自身对行业的观察,认为目前互联网金融征信主要有以下三方面:
其一,企业自建征信标准
蚂蚁金服旗下的芝麻信用以支付宝和阿里电商交易体系为依托,结合购物、支付、以及相关数据,自建征信体系。由于信用体系将伴随用户一生,信用指数较高的用户可获得签证等方面的便利,用户出于自己未来利益考虑也不会轻易违约。
其二,企业参考全网数据严控金融风险
玖富作为国内领先的互联网金融集团,一直在研究大数据风控和风险评估。旗下的闪银Wecash便是基于用户的社交大数据进行的风险评估,只要用户有网络社交平台账号,即可在移动端进行闪电评估,出示具体分数后将很快拿到授信额度。
随着移动互联网兴起,社交平台可包含用户交际圈、消费习惯等维度信息,这都是综合评判用户履约能力的重要指标。
其三,强强结合
不久前玖富宣布与芝麻信用展开信用合作,双方将在芝麻分、反欺诈、风险名单等业务上展开深度合作。芝麻信用将丰富玖富对借款人的评估维度,为玖富移动金融业务筛选出更加优质的客户,进而提高整个平台的风控水准;而玖富客户的履约行为也将对个人的“芝麻分”产生影响,并从长远推动中国基础征信体系的建设。
如果一切顺利,双方的征信体系将会成为国内最大最权威的金融征信数据中心。
互联网金融行业如众多新兴行业一样,也是经历了草创阶段之后才逐步进入科学化管理阶段。而铁哥以为在科学化改造过程中,将会有一大批缺乏大数据采集技术和意识的平台走向灭亡,也会有一大批沉迷过往草莽手段的平台逐渐被科学化平台所淘汰。而曾经将互联网金融平台视为大客户的社会人士业务也将逐渐萎缩。在此,铁哥有必要提醒那些体量不大但认为也可通过大数据做征信体系的平台,不要对此抱太大幻想,由于体量较小,用户量小,而缺乏基础量的数据支撑下的所谓大数据,是无法建立模型进行数据分析的,即便草草建模数据真实性也难以保证。其规避风险能力还不见得有黑社会催缴强。
当然一些如玖富这般有数据技术、体量以及用户支撑的互联网金融平台将成为科学化改造的最大受益者,互联网金融行业也才真正进入正常的互联网发展轨道中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08