
百度欲借大数据+造零售行业新引擎
这个违背数学定律的不等式,从古至今,在不同的领域内都不断的被验证。
汉初两位谋士张良、陈平,一个善用阳谋,打造王者威望,一个诡计百出,破敌千里之外。而在如今的传统IT领域,1+1>2的一个典型案例则是Win-tel联盟,一软一硬,相互结合,形成了数十年牢不可破的行业生态。
跨产业的密切合作将有可能形成这样的格局,现在,我们又一次看到了互联网与传统行业融合产生的1+1>2效应。9月22日,百度宣布了与国际顶级市场调研机构IRI的战略合作,双方将共同携手推动零售行业大数据化的落地和发展。
在月初的百度世界大会上,百度高级副总裁王劲刚刚发布了大数据+战略,宣告了百度利用大数据进军传统行业的雄心壮志。月底,他们很快展示了布局大数据+的行动力。
BAT觊觎传统行业这个大蛋糕已经是不争的事实,三巨头纷纷投入重金希望自身成为传统行业“触网”的入口。除了资本层面的投入,技术上的,百度希望形成自身的差异化竞争力:利用大数据等技术手段,推动传统行业的快速腾飞。
此次百度瞄准的行业是零售行业。对于这个行业,百度难以掩饰他们的野心,差不多一年之前,他们就和万达、腾讯联手成立的万达电商,在万达的商业地产中注入互联网因素。而在之后很长的时间中,他们不断在试图利用技术优势帮助零售行业突破一些发展瓶颈。北京的朝阳大悦城就已经利用了百度的大数据技术,实现自身业务快速增长。
朝阳大悦城用户覆盖北京各地,他们不仅拥有庞大的用户规模,同时用户群体需求分化非常明显,用户期望获取差异化、个性化服务的诉求不断上升。朝阳大悦城迫切的希望能够改变这样的局面,与百度的合作成为双方实现共赢发展的良好契机。
在充分保障用户隐私和安全的前提下,百度将自身海量的线上数据和大悦城线下多年积累下来的数据结合在一起,从而更好地洞悉用户需求。基于大数据技术,百度和大悦城制订了一些更有针对性、更精准的推广计划。
大数据为朝阳大悦城带来了卓有成效的贡献,我们从公开渠道获知的数据是:朝阳大悦城的会员销售额提高了12%,未购买品牌推荐转化率提升了五倍;非活跃会员到场消费率提高53%!这是一个了不起的成就。
而这种飞跃的提升仅仅是百度与朝阳大悦城的第一期合作,在后续,他们还将进一步挖掘大数据的潜力,实现线上和线下服务的打通,把大数据的威力再提高一个层次。
大数据+零售行业可以让零售行业依靠自身的雄厚基础,不断优化业务模型,进行迭代升级,从而实现互联网转型。对于零售行业来说,这种渐进式的升级,有效避免了转型过程中的剧烈阵痛,更加有利于保持业务的稳定性与可持续性。
百度大数据部高级总监郭谢表示,“百度在技术上的精深保证了对大数据的充分挖掘,例如百度拥有世界最顶级的机器学习与人工智能专家,能够帮助传统行业从海量数据中发觉出有价值的信息建立模型。尤其是当数据量极其庞大的时候,数据的噪音会很多,而百度就能够屏蔽噪音,提取出有价值的信息”。
据了解,在于IRI的合作之后,百度将利用大数据作为主要武器,构筑传统零售的O2O模型方案,尝试用更加精准的群体用户画像,服务传统零售行业,帮助他们提升客源与转化率。他们将尝试利用大数据对群体用户进行区分,实现精准的定向营销,强化既有客户关系维护,提升到店顾客的转化率,并且致力于通过大数据技术实现用户消费体验的提升。
百度郭谢也透露,未来他们还将与更多的重磅零售行业合作伙伴携手一起,我们也期待着百度大数据+零售行业的下一个大事件。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15