京公网安备 11010802034615号
经营许可证编号:京B2-20210330
人类不知道的,远远比知道的更有意义大数据能不能预测“黑天鹅”?还是等失联的飞机找到再说吧
“黑天鹅事件”与“大数据时代”,可算是现下流行的两个高冷词汇。
其实“黑天鹅”并不是什么新词。据说,17世纪的欧洲人认为所有的天鹅都是白色的,因为他们从来没有见过其他颜色的天鹅,当然,我到现在也没见过其他颜色的天鹅。到了18世纪初,欧洲人远渡重洋来到澳洲,一上岸就惊奇地发现,居然有的天鹅是黑色的!欧洲人吓尿了,因为他们之前那么坚信自己的判断。可残酷的事实让欧洲人的信念土崩瓦解,他们跑回老家奔走相告:妈妈,原来世界上也有黑天鹅啊……史称“黑天鹅事件”。
“黑天鹅”的出现预示着,世界上永远存在不可预测的重大和罕见事件,意料之外,一旦出现却有可能改变一切。人类总是过于相信自己的经验,希望自己的判断、决定和计划能如期而至,但是现实总是让我们手足无措。无论是泰坦尼克号的沉没、第二次世界大战、9·11袭击、美国的次贷危机、互联网浪潮等等,都不是人为能够预测出来的,但这些事件的发生,对人类历史发展的进程产生了重大的影响。
甚至普通人日常生活中的选择,也存在很多黑天鹅现象。我有两个朋友,一个坚韧不拔,对公司不抛弃不放弃,十几年过去了,一路从程序员成长为技术副总裁,然后公司因为一个突如其来的财务丑闻倒闭了;另一个朋友总是在选择中跳槽,在跳槽中选择,最后在一家公司工作了两年后,公司上市了,这家伙还去纳斯达克敲了钟!大家可以感受一下,然后静下心来想一想,你所生活过的这十几年,或几十年,哪些日子是在计划中度过的?
当然,很多人会说我们现在有了大数据相关的技术,我们的信息浩如烟海,如果说过去的数据用筐装就够了,现在得用列车和舰艇运输,我们用千百万台连接到一起的计算机对这些数据进行计算、加工和统计,难道还预测不出一两只黑天鹅来吗?在自然界的物种领域,当世的科技和讯息的传播几乎已经不会再犯17世纪欧洲人的错误了。但是,“黑天鹅事件”,依然难以预测。
讲一个寓言故事吧。有一头不在风口的猪,自打出世以来就在猪圈这样一个世外桃源生活,每天会来一些站立行走的生物,时不时扔一些好吃的进来,小猪觉得日子惬意极了。它高兴了就去泥里打滚,忧伤了就趴在猪圈的护栏上看夕阳西下,春去秋来,岁月不争。经过数百天的大数据分析,小猪觉得日子会一直这样过下去,直到他从小猪长成了肥猪……在春节前的一个下午,一次血腥的杀戮改变了猪的信念:尼玛大数据都是骗人的啊……惨叫戛然而止。
无论是你的个人收入、知名度,还是你的Google 搜索量、血压、牙患、股票价格都有可能是“黑天鹅事件”,它们在过去的几百天之内只发生了微小的变化,并且具备一定的趋势,你以为事情会一直这样发展下去了,就像太阳每天从东边升起、西边坠落一样自然,但是到了1001天的时候,砰的一声,一个过去从未有过的巨大变化发生了!比如,前些天“康师傅”就被立案调查了。
人类不知道的远远比知道的更有意义。历史永远不是线性发展,每一次跳跃前行中都有“黑天鹅”的身影。这或许才是“黑天鹅”要告诉我们的真相。
那么普通人如何面对“黑天鹅现象”呢?如果我说“他强任他强,清风抚山冈;他横由他横,明月照大江”,大家会不会点赞呢?料想是不会的,所以我的看法是:
1.保持独立的人格和思考,持续提升个人能力。在改变历史进程的“黑天鹅事件”中,个人的作用可能微乎其微,但是在生活中就有用了。比如你早晨起了床,刷了牙,吃了早饭,为自己的梨形身材套上合身的西装并扎好领带,高高兴兴去上班,然后发现自己失业了。没关系,哥一身是胆满腹经纶左右手都能编程,分分钟找到下家并薪资翻倍。
2.努力让自己的生活发生正面的“黑天鹅事件”,寻找报酬具有突破性的职业和工作,工作成果不受时间限制,也不是按件记酬。比如我,现在就寄希望成为图书销售百万的技术作家神马的……
3.通过反证接近真相。当所有人都认为某件事的发生是理所当然的,不要急着附和,往其他方向看一看想一想,不是有句老话吗,我不能证明这件事是正确的,但我可以证明它是错误的。不是说不能过马路,而是说不要闭着眼睛过马路。
等等,说了半天,大数据是干吗的?就目前数据计算能力,大数据主要应用于经营决策、智能推荐、定向营销、机器学习和人工智能等方面,至于预测“黑天鹅事件”,还是等失联的飞机找到再说吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05