京公网安备 11010802034615号
经营许可证编号:京B2-20210330
简单介绍使用Python解析并修改XML文档的方法
这篇文章主要介绍了使用Python解析并修改XML文档的方法,是Python入门学习中的基础知识,需要的朋友可以参考下
问题
你想读取一个XML文档,对它最一些修改,然后将结果写回XML文档。
解决方案
使用 xml.etree.ElementTree 模块可以很容易的处理这些任务。 第一步是以通常的方式来解析这个文档。例如,假设你有一个名为 pred.xml 的文档,类似下面这样:
下面是一个利用 ElementTree 来读取这个文档并对它做一些修改的例子:
>>> from xml.etree.ElementTree import parse, Element
>>> doc = parse('pred.xml')
>>> root = doc.getroot()
>>> root
<Element 'stop' at 0x100770cb0>
>>> # Remove a few elements
>>> root.remove(root.find('sri'))
>>> root.remove(root.find('cr'))
>>> # Insert a new element after <nm>...</nm>
>>> root.getchildren().index(root.find('nm'))
1
>>> e = Element('spam')
>>> e.text = 'This is a test'
>>> root.insert(2, e)
>>> # Write back to a file
>>> doc.write('newpred.xml', xml_declaration=True)
>>>
处理结果是一个像下面这样新的XML文件:
讨论
修改一个XML文档结构是很容易的,但是你必须牢记的是所有的修改都是针对父节点元素, 将它作为一个列表来处理。例如,如果你删除某个元素,通过调用父节点的 remove() 方法从它的直接父节点中删除。 如果你插入或增加新的元素,你同样使用父节点元素的 insert() 和 append() 方法。 还能对元素使用索引和切片操作,比如 element[i] 或 element[i:j]
如果你需要创建新的元素,可以使用本节方案中演示的 Element 类。我们在6.5小节已经详细讨论过了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23