京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代 这些问题待解决
近日,据《参考消息》报道,我国正在开展的全国网络安全执法大检查行动,首次开展了针对大数据安全的整治工作,具体包括大数据的采集、存储、应用、传输、销毁等全生命周期的监管、安全整治以及保护。该消息引发社会各界广泛关注。
在网络时代的今天,数据信息是否安全时刻触动着每个人的心弦。有关专家告诉《中国科学报》记者,尽管大数据已使用多年,但在技术监管领域,各环节仍存在诸多技术难点。
数据来源是否可靠待鉴定
据了解,此次大数据安全整治检查中一项重点工作是对合法采集内容与非法采集内容进行分类。其中,对于非法采集信息,将进行集中打击、销毁;对合法、合规采集的信息,则纳入保护监管范围。
浙江大学网络空间安全研究中心主任任奎表示,从网络安全的角度来看,首先,大数据在采集的过程中一方面需要考虑对数据源进行认证,确保数据本身的可靠性,如何在不增加负荷的情况下,特别是针对物联网中计算处理能力相对较弱的设备,实现有效的认证还有待研究。另一方面需要重视隐私保护,如何有效地对数据进行脱敏仍然存在挑战,当前比较热门的方法诸如差分隐私技术仍在积极发展中。
“公民的信息是公民的私有财产,如果不对数据进行溯源来证明数据来源渠道,那么很可能助长非法数据来源的气焰。”上海交通大学计算机科学与工程系教授朱浩瑾说。
中国科学院信息工程研究所DCS中心副研究员王跃武告诉记者,对于大数据而言,关键还是尽量将技术做到更完善,来保证数据分析结果的真实性、可靠性。
提及目前大数据存储环节存在的问题,任奎告诉记者,目前的主要问题是如何在有效保护数据的前提下,完整支持传统的功能,诸如常见的搜索、排序、聚合分析等,当前相关安全技术与明文应用相比,尚存在功能和性能上的差距,有待提高。
“此外,还应该考虑如何进行安全去重等实际需求,从而减轻数据存储的压力,但这与‘备份’这种主动的防灾机制是不同的,相关安全技术在安全与性能的平衡方面仍然需要进一步研究。”任奎补充道。
采访中,针对大数据的存储技术,王跃武与任奎一致认为,从软件层面比较主流的是基于分布式系统的非关系型数据库。
据了解,非关系型数据库的优点主要在于易扩展、高性能等,但是也存在诸如标准化不足、功能支持不够丰富等缺点。常见的分类有键值存储、列存储、文档存储以及图存储。但是,如何权衡实际应用中的需求,比如系统的一致性、可用性以及分区容错性等,并提供定制化的技术,仍有大量工作要做。
如何避免“中间人”的攻击?
任奎表示,数据在网络中进行传输,也需要防止监听、篡改这类传统的“中间人”攻击等,因此端到端加密是很有必要的。但是,端到端加密技术仍然面临很多新型侧信道攻击来窥探隐私的挑战,尤其是最近一些以人工智能方法来展开的侧信道分析工作也说明了这一领域仍然有很多问题需要解决。“除此以外,端对端加密虽然好用,但同时也给网络入侵检测、加密数据防火墙的设计带来更多的挑战,如何安全、高效地支持这类应用还需要进一步研究。”任奎说。
360安全专家刘洋曾在接受记者采访时表示,传统的网络安全思路已经无法保障大数据时代的安全。传统网络安全的防护思路是划分边界,将内网、外网分开,业务网和公众网分离,用终端设备将潜在风险隔离。通过在每个边界设立网关设备和网络流量设备来守住“边界”,以期解决安全问题。但随着移动互联网、云服务的出现,移动终端在4G信号、Wi-Fi信号、电缆之间穿梭,网络边界实际上已经消亡。
大数据销毁并非简单的“删除”“清空”
在朱浩瑾看来,在我国,数据销毁仍是一个不小的问题。他指出,欧盟出台的《通用数据保护条例》中明文规定了用户的“被遗忘权”,即用户个人可以要求责任方删除关于自己的数据记录,而国内的法律无此规定。此外,企业究竟有无对数据进行销毁,在技术上并不好验证。“比如你的手机移动端可以进行一些设置,但是服务器端你怎么知道有没有销毁?”朱浩瑾补充道。
任奎指出,大数据的销毁是实现数据有效管理的必要过程,其过程并非简单的“删除”“清空”,如何保证指定的内容确实被“清除”与“销毁”,除了技术层面的发展,仍需要建立行之有效的规范,例如美国国防部的DoD 5220.22-M规范。
对此,王跃武表达了不同意见。他表示,大数据时代,数据来源是一个由线到面的过程,销毁从本质上来讲是一种消极的做法。“大数据如同金矿,我们尽力从中淘出金子,然后将其保护好,这才是我们该做的。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27