京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代:“数据”如何转化成“财富”
“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程。”
———哈佛大学社会学教授加里·金
一分钟内,微博推特(Twitter)上新发的数据数超过10万;社交网络“脸谱”(Facebook)的浏览量超过600万……
这些庞大数字,意味着什么?
它意味着,一种全新的致富手段也许就摆在面前,它的价值堪比石油和黄金。
事实上,当你仍然在把微博客等社交平台当作抒情或者发议论的工具时,华尔街的敛财高手们却正在挖掘这些互联网的“数据财富”,先人一步用其预判市场走势,而且取得了不俗收益。
现在就让我们一起来看看——他们是怎么做的。
这些数据,都能干啥
●华尔街根据民众情绪抛售股票;
●对冲基金依据购物网站的顾客评论,分析企业产品销售状况;
●银行根据求职网站的岗位数量,推断就业率;
●投资机构搜集并分析上市企业声明,从中寻找破产的蛛丝马迹;
●美国疾病控制和预防中心依据网民搜索,分析全球范围内流感等病疫的传播状况;
●美国总统奥巴马的竞选团队依据选民的微博,实时分析选民对总统竞选人的喜好。
个案
你开心他就买你焦虑他就抛
华尔街“德温特资本市潮公司首席执行官保罗·霍廷每天的工作之一,就是利用电脑程序分析全球3.4亿微博账户的留言,进而判断民众情绪,再以“1”到“50”进行打分。根据打分结果,霍廷再决定如何处理手中数以百万美元计的股票。
霍廷的判断原则很简单:如果所有人似乎都高兴,那就买入;如果大家的焦虑情绪上升,那就抛售。
这一招收效显着——今年第一季度,霍廷的公司获得了7%的收益率。
“数据”如何转化成“财富”
国际商用机器公司(IBM)估测,这些“数据”值钱的地方主要在于时效。对于片刻便能定输赢的华尔街,这一时效至关重要。5年前,华尔街2%的企业搜集微博等平台的“非正式”数据;如今,接近半数企业采用了这种手段。
●“社会流动”创业公司在“大数据”行业生机勃勃,和微博推特是合作伙伴。它分析数据,告诉广告商什么是正确的时间,谁是正确的用户,什么是应该发的正确内容,备受广告商热爱。
●通过乔希·詹姆斯的Omniture(着名的网页流量分析工具)公司,你可以知道有多少人访问你的网站,以及他们待了多长时间——这些数据对于任何企业来说都至关重要。詹姆斯去年把公司卖掉,进账18亿美元。
●微软专家吉拉德喜欢把这些“大数据”结果可视化:他把客户请到办公室,将包含这些公司的数据图谱展现出来——有些是普通的时间轴,有些像蒲公英,有些则是铺满整个画面的泡泡,泡泡中显示这些客户的粉丝正在谈论什么话题。
●“脸谱”数据分析师杰弗逊的工作就是搭建数据分析模型,弄清楚用户点击广告的动机和方式。
既能创造财富,就催生出新职业
周默(音译)是耶鲁大学的一名MBA毕业生,踏出校门便被IBM公司“抢走”,加入该公司正迅速扩展的数据咨询部门——这个部门专门负责对眼下社交网络上爆炸式的数据提供分析,对公司决策、削减开支、提升销售提供参考。
目前,美国需要更多像周默一样的数据分析人才。根据研究机构数据,美国需要14万至19万数据专家以及150万的数据分析师。
这些“数据财富”还能服务个人
财富并非只由大公司主宰。一名硅谷风险投资机构的专家说,“大数据”不仅仅是一个时髦词汇,“我相信它有真正的未来,这些数据将分散在各个领域,你的行车路线、你经常出现的地点、你喜欢的颜色、经常买的东西,社交网站上的观点和言论,这些都会成为个人数据的一部分,它们可以用来服务每个人”。
位于美国加州的帕洛阿尔托创业公司开发了一款产品:它看上去是一款普通的地理位置应用,而事实上,它能自动记录你经常出现的地理位置,并自动生成为数据图表——这些数据会帮助分析每日的行程路线、生活必去场所,甚至驾驶里程与汽油存量的关系,形成一款“个人生活助理工具”。
风险隐私的末日?
然而,新忧虑也随之而生。一些民间机构担心,企业和机构对这些数据无以复加的利用,可能违背了微博博主等发布数据者的初衷,从而构成隐私侵犯。法律框架的搭建远远赶不上新技术的发展,同时,各国对个人隐私的界定不一。另一潜在风险是,一些人可能利用微博等平台发布虚假数据,营造某一企业经营现状的假象,以期抬高或压低这家企业的股价。
科学扫盲
“大数据”有多大?
它是对科技发展趋势的一种“素描”,这种科技为人类打开了一扇门,可以更懂得这个世界并作出自己的决定。目前,全球的数据量正以每年50%的速度增长,而且,这种数据并不单纯是数量上的增加,而是全领域全方位的数据变化。当人们将这些数据通过电脑进行分析,就变成对某种发展趋势的判断。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16