
大数据时代 这些问题待解决
在网络时代的今天,数据信息是否安全时刻触动着每个人的心弦。有关专家告诉《中国科学报》记者,尽管大数据已使用多年,但在技术监管领域,各环节仍存在诸多技术难点。
数据来源是否可靠待鉴定
据了解,此次大数据安全整治检查中一项重点工作是对合法采集内容与非法采集内容进行分类。其中,对于非法采集信息,将进行集中打击、销毁;对合法、合规采集的信息,则纳入保护监管范围。
浙江大学网络空间安全研究中心主任任奎表示,从网络安全的角度来看,首先,大数据在采集的过程中一方面需要考虑对数据源进行认证,确保数据本身的可靠性,如何在不增加负荷的情况下,特别是针对物联网中计算处理能力相对较弱的设备,实现有效的认证还有待研究。另一方面需要重视隐私保护,如何有效地对数据进行脱敏仍然存在挑战,当前比较热门的方法诸如差分隐私技术仍在积极发展中。
“公民的信息是公民的私有财产,如果不对数据进行溯源来证明数据来源渠道,那么很可能助长非法数据来源的气焰。”上海交通大学计算机科学与工程系教授朱浩瑾说。
中国科学院信息工程研究所DCS中心副研究员王跃武告诉记者,对于大数据而言,关键还是尽量将技术做到更完善,来保证数据分析结果的真实性、可靠性。
提及目前大数据存储环节存在的问题,任奎告诉记者,目前的主要问题是如何在有效保护数据的前提下,完整支持传统的功能,诸如常见的搜索、排序、聚合分析等,当前相关安全技术与明文应用相比,尚存在功能和性能上的差距,有待提高。
“此外,还应该考虑如何进行安全去重等实际需求,从而减轻数据存储的压力,但这与‘备份’这种主动的防灾机制是不同的,相关安全技术在安全与性能的平衡方面仍然需要进一步研究。”任奎补充道。
采访中,针对大数据的存储技术,王跃武与任奎一致认为,从软件层面比较主流的是基于分布式系统的非关系型数据库。
据了解,非关系型数据库的优点主要在于易扩展、高性能等,但是也存在诸如标准化不足、功能支持不够丰富等缺点。常见的分类有键值存储、列存储、文档存储以及图存储。但是,如何权衡实际应用中的需求,比如系统的一致性、可用性以及分区容错性等,并提供定制化的技术,仍有大量工作要做。
如何避免“中间人”的攻击?
任奎表示,数据在网络中进行传输,也需要防止监听、篡改这类传统的“中间人”攻击等,因此端到端加密是很有必要的。但是,端到端加密技术仍然面临很多新型侧信道攻击来窥探隐私的挑战,尤其是最近一些以人工智能方法来展开的侧信道分析工作也说明了这一领域仍然有很多问题需要解决。“除此以外,端对端加密虽然好用,但同时也给网络入侵检测、加密数据防火墙的设计带来更多的挑战,如何安全、高效地支持这类应用还需要进一步研究。”任奎说。
360安全专家刘洋曾在接受记者采访时表示,传统的网络安全思路已经无法保障大数据时代的安全。传统网络安全的防护思路是划分边界,将内网、外网分开,业务网和公众网分离,用终端设备将潜在风险隔离。通过在每个边界设立网关设备和网络流量设备来守住“边界”,以期解决安全问题。但随着移动互联网、云服务的出现,移动终端在4G信号、Wi-Fi信号、电缆之间穿梭,网络边界实际上已经消亡。
大数据销毁并非简单的“删除”“清空”
在朱浩瑾看来,在我国,数据销毁仍是一个不小的问题。他指出,欧盟出台的《通用数据保护条例》中明文规定了用户的“被遗忘权”,即用户个人可以要求责任方删除关于自己的数据记录,而国内的法律无此规定。此外,企业究竟有无对数据进行销毁,在技术上并不好验证。“比如你的手机移动端可以进行一些设置,但是服务器端你怎么知道有没有销毁?”朱浩瑾补充道。
任奎指出,大数据的销毁是实现数据有效管理的必要过程,其过程并非简单的“删除”“清空”,如何保证指定的内容确实被“清除”与“销毁”,除了技术层面的发展,仍需要建立行之有效的规范,例如美国国防部的DoD 5220.22-M规范。
对此,王跃武表达了不同意见。他表示,大数据时代,数据来源是一个由线到面的过程,销毁从本质上来讲是一种消极的做法。“大数据如同金矿,我们尽力从中淘出金子,然后将其保护好,这才是我们该做的。”王跃武说。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15