京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据如何优化企业HR管理
第一:重视大数据的作用
大数据时代的到来意味着企业的经营环境也发生了很大变化,新特点是决策以数据为依据,数据进行网络共享,信息系统作为数据集成的平台。
人力资源要想发挥自己更大的价值并且拓宽自己的职能,专业化水平的提升是关键。而大数据在提升专业化的过程中发挥着极为重要的作用,其利用互联网技术科学规范人力资源管理,使得每一个步骤都在向专业化的方向靠拢。
未来人力资源行业的发展势必会以依托大数据云计算为发展趋势,人力资源管理模式的升级要全面充分地掌握数据,重视数据的准确性和共识性,随时对数据进行动态监测。与此同时,企业还应当实现在数据与最终人才价值与利益之间的转化,借助外力来提高人力资源管理的质量。
第二:促成人力资源管理的创新
在大数据的帮助下,人力资源管理将由原来多依靠经验进行管理向更加科学规范的管理方式转变,其中的选、育、用、留等过程都逐渐可以量化查询。如此一来管理过程以及结果更加令人信服,精准度更高,管理部门自然也树立更高的威信。
新时代下,人力资源管理对于数据的依赖程度继续加深,先进的平台与相关技术可以更加科学高效地管理人才信息,管理效率大大提升。管理部门通过先进的平台对数据信息进行获取和分析,不但便捷,而且使整个过程更加规范化,更为人力资源部门的领导者做出决策提供了更为可靠的依据。
第三:大数据在企业HR中的应用
图:大数据在企业HR中的应用
1、人力资源管理需要制定管理策略和规划。在大数据时代下,市场环境瞬息万变,企业也需要随时调整自己的战略策略来进行应对。这就需要人力资源部门具备十分敏锐的洞察能力,在人力资源战略的规划方面要与企业发展策略相一致,只有二者相协调,人力资源部才能为企业发展提供强大的推动力。
2、对员工的能力提出新要求。在传统时代下,员工的工作经验是企业关注的重点,而到了大数据时代已经逐步向偏向于员工的数据处理能力。在数据规模巨大并且复杂的今天,企业员工须得具备对数据理性分析的能力,单凭经验判断则容易出现失误。因此,员工应当学会运用数据和系统,针对工作的特点掌握相应的数据处理能力,提高工作的准确度和效率。
3、企业招聘精准化。在企业的招聘过程中,最核心也是最基本的问题就是企业与人才之间的匹配问题,而大数据就为该匹配过程提供了精准高效的工具。在大数据时代,信息传播的渠道增多,人们之间的沟通与交流也越来越频繁。传统的招聘形式主要依靠个人自己撰写的应聘信息来了解情况,而在大数据时代下则可以通过各个社交平台来对个人信息进行深入挖掘,对应聘者的情况有更加全面以及深入的了解,从而更加精确地完成企业与人才之间的匹配。
4、调整员工培训的方向。传统模式下员工培训多集中于企业相关业务水平的训练,而在大数据时代下,对数据信息的整合、提炼、分析、价值挖掘等能力的训练提上日程。企业员工在对数据熟练运用的前提下还要培养制定行动计划与提高自身执行力的能力。
5、改进人才考核。大数据对于人才选拔、绩效考核等问题的研究提供了更加具有说服力的科学依据,能够帮助决策者挖掘出数据之间存在的一些潜在联系,通过这些联系来把员工的综合情况串联起来,有效进行各项考核评测。
6、人性化的激励制度。在数据流的冲击下,企业结构、组织等不断进行调整甚至重建,在应对市场环境变化的同时也容易给员工带来心理上的不安全感。因此,实施人性化基础上员工激励制度,能够最大限度提高员工的心理归属感与企业集体荣誉感,激发员工积极性,使其价值的实现去企业价值的增长同步进行。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16