京公网安备 11010802034615号
经营许可证编号:京B2-20210330
BI数据集成的作用不可小觑
数据集成是商业智能(BI)流程的关键组成部分,可将来自多个源系统的数据进行整合,并将它们合并到数据仓库以作分析。不过,对于BI数据集成策略,数据管理分析师提醒从业者不可掉以轻心;一旦设计执行不得当,策略很容易就会出现漏洞。
美国Intelligent Solutions咨询公司的总裁Claudia Imhoff说,数据必须及时上传到数据仓库为BI计划所使用,若时机不当,所有的工作就会毁于一旦。由于有些用户需要对数据进行实时处理,这就要求BI和数据集成团队充分理解企业的BI需求。
Imhoff提到,数据质量非常重要,对不良数据进行校对与清理不应该只是BI数据集成流程的专有功能。“错误无处不在,我们需要找出它们的来源。”只有这样,我们才能从一开始就预防源系统的数据错误。实际上,合并错误数据本来就是数据集成和BI专家们工作的一部分,所以出了纰漏他们是要负责任的。她说:“我们需要让员工明白,他们的任务不仅仅是做一个传输者。”
Gartner分析师Ted Friedman认为,BI数据集成存在的最大问题就是人们对数据质量的关注度不够。“我已经从事数据集成工作超过十年之久了,但还是要花很多精力去说服企业,让他们了解BI的作用和价值,使他们接受并信任自己的BI决策,这主要是由于他们还没找到正确的方法保证数据的质量。”
Friedman说,对于“倔强”的企业,数据质量问题的负面影响不仅仅在于BI方面,但糟糕的数据质量绝对是BI项目获得成功实施的主要障碍之一。企业在将信息载入到数据仓库的过程中,从头到尾都忽视数据的质量、发现问题后也不采取任何减缓措施就会造成这样的局面。
James KoBIelus曾在Forrester公司担任分析师,今年初跳槽到了一家技术供应商。他指出,数据质量方面的失误已经成了BI数据集成工作中普遍存在的问题。[page]
KoBIelus曾说过:“企业总以为把后台应用程序中的数据导入数据仓库以后,不需要做任何清理、匹配、融合或者转换工作就可以直接使用。”这样一来,公司总会碰到各种各样出其不意的问题。例如,“同一个名下出现六条记录,没人知道哪条才是正确的。”
BI数据集成的影响力不可小觑
Baseline Consulting公司的创始人之一Jill
Dyche称,还有一个造成数据不一致而产生负面影响的原因,就是企业内部对记录系统结构存在分歧。打个比方,工作人员无法确定哪一个交易系统应该用作客户地址信息源。这样的争论通常涉及“地址”的定义--在各不相同的情况下,到底以客户的账单地址为准?还是送货地址?抑或是公司地址?
Dyche说:“就这样,论战相继而发,于是业务人员开始怀疑BI团队对于正确数据的理解及传输能力。然后,有人就会建议干脆把全部信息丢进一个数据库里,可业务人员又不愿意这么做。”
9sight Consulting公司的创始人Barry Devlin认为,在制定BI数据集成的策略与方案过程中,员工不会造成什么太大的失误。“他们是业务团队中一个特殊的群体,拥有多年的数据处理经验,对数据理解颇深;他们是十足的专家和达人。”因此,对于数据如何进行集成、怎样生成高效的BI应用程序,他们拥有最佳决定权。
Devlin说,尽管如此,IT部门员工在大多数时候不仅负责实施工作,还需要改进数据集成方案。在Devlin看来,虽然IT专业人士可能对企业数据有着很好的理解,但他们还不能称其为真正的专家。他说,使这两个团队联合起来共同完成BI数据集成困难重重,却别无选择。
Imhoff称,目前一些企业对BI毫无经验可言,也不具备满足BI项目数据集成需求的能力,却急于达成目标,制定出不切实际的计划。然而,对数据进行集成并上传到数据仓库这一流程占据了整个BI项目60%到80%的工作量。如果一个项目团队想要一次完成所有的工作,那么他们不久后就会以失败告终。她认为这样的趋势正在愈演愈烈,于是告诫道:“不要指望一口吃成一个胖子。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17