京公网安备 11010802034615号
经营许可证编号:京B2-20210330
详谈Python基础之内置函数和递归
下面小编就为大家带来一篇Python基础之内置函数和递归。小编觉得挺不错的。现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
一、内置函数
下面简单介绍几个:
1.abs()求绝对值
2.all()如果 iterable 的所有元素都为真(或者如果可迭代为空),则返回 True
3.any()如果 iterable 的任何元素为真,则返回 True。如果iterable为空,则返回 False
4.callable()如果 object 参数出现可调,则返回 True,否则返回 False
5.divmod()以两个(非复数)数字作为参数,并在使用整数除法时返回由商和余数组成的一对数字。对于混合操作数类型,二进制算术运算符的规则适用。对于整数,结果与 (a//b,a%b) 相 同。对于浮点数,结果为 (q,a%b),其中q 通常为 math.floor(a/b),但可以小于1
6.enumerate()参数必须是可迭代对象,函数运行结果得到一个迭代器,输出元素及对应的索引值
7.eval()把字符串中的提取出来执行
8.frozenset()不可变集合,frozenset()定义的集合不可增删元素
9.globals()返回表示当前全局符号表的字典。这始终是当前模块的字典(在函数或方法内部,这是定义它的模块,而不是从其调用它的模块)
10.round()对参数进行四舍五入
11.sorted()排序,不改变原列表
l=[1,2,4,9,-1]
print(sorted(l)) #从小到大
print(sorted(l,reverse=True)) #从大到小
12.zip() 拉链函数
创建一个迭代器,聚合来自每个迭代器的元素。
返回元组的迭代器,其中 i-th元组包含来自每个参数序列或迭代的第 i 个元素。当最短输入可迭代被耗尽时,迭代器停止。使用单个可迭代参数,它返回1元组的迭代器。没有参数,它返回一个空的迭代器
13.max()
返回可迭代的最大项或两个或更多参数中最大的一个。
如果提供了一个位置参数,它应该是一个 iterable。返回迭代中的最大项。如果提供了两个或多个位置参数,则返回最大的位置参数。
max()可以指定key(也就是指定要比较的部分)
14.map() 映射
返回一个迭代器,它应用 function 到 iterable 的每个项目,产生结果
l=[1,2,3,4]
m=map(lambda x:x**2,l)
print(list(m)) ----->[1, 4, 9, 16]
15.reduce() 合并
from functools import reduce
res=0
for i in range(100):
res+=i
print(res)
16.filter() 过滤 保留布尔值为True的元素
names=['alex_sb','yuanhao_sb','wupeiqi_sb','egon']
print(list(filter(lambda name:name.endswith('_sb'),names)))--->['alex_sb', 'yuanhao_sb', 'wupeiqi_sb']
详细的内置函数介绍可以参照以下:https://www.rddoc.com/doc/Python-3.6.0/library/functions/
二、匿名函数(lambda表达式)
def func(x):
return x**2
print(func(2))
lambda x:x**2 #上边的函数就可以直接写成这种形式
lambda函数自带返回值
匿名函数只能取代一些很简单的函数,主要与其他函数搭配使用
还有一种情况是有些函数定义后只使用一次就用不到了,如果不删除的话会占内存空间,删除又会很麻烦,这时就可以用到匿名函数
三、递归
在调用一个函数的过程中,直接或间接使用了函数本身
递归效率很低,需要在进入下一次递归时保留当前状态,Python不像其他语言,没有尾递归,但是Python有限制条件,不允许用户无限递归
递归的特点:
1.必须要有一个明确的结束条件
2.每次进入更深一层递归时,问题规模相比上次递归都应该有所减少
3.递归效率不高,递归层数过多会导致栈溢出
示例:
# 1 文件内容如下,标题为:姓名,性别,年纪,薪资
#
# egon male 18 3000
# alex male 38 30000
# wupeiqi female 28 20000
# yuanhao female 28 10000
#
# 要求:
# 从文件中取出每一条记录放入列表中,
# 列表的每个元素都是{'name':'egon','sex':'male','age':18,'salary':3000}的形式
#
# 2 根据1得到的列表,取出薪资最高的人的信息
# 3 根据1到的列表,取出最年轻的人的信息
# 4 根据1得到的列表,将每个人的信息中的名字映射成首字母大写的形式
# 5 根据1得到的列表,过滤掉名字以a开头的人的信息
# 6 使用递归打印斐波那契数列(前两个数的和得到第三个数)
# 0 1 1 2 3 4 7...
with open('b.txt',encoding='utf-8')as f:
l=[{'name': line.split()[0], 'sex': line.split()[1], 'age': line.split()[2], 'salary': line.split()[3]} \
for line in f]
#2.
print(max(l,key=lambda i:i['salary']))
#3.
print(min(l,key=lambda i:i['age']))
#4.
m=map(lambda x:x['name'].capitalize(),l)
print(list(m))
#5.
print(list(filter(lambda x:not(x['name'].startswith('a')),l)))
#6.
def f(n):
if n==0:
return 0
elif n==1:
return 1
else:
if n==1000:
return f(1000)
else:
return f(n-2)+f(n-1)
for i in range(150):
print(f(i))
以上这篇详谈Python基础之内置函数和递归就是小编分享给大家的全部内容了
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27