京公网安备 11010802034615号
经营许可证编号:京B2-20210330
采用大数据技术占领竞争高地
在Talend Connect大会上,一名IT业内分析专家指出,企业若不抓住大数据带来的机会,将很有可能在同行中遭到淘汰。
Jeff Kelly是Wikibon.org的首席研究员,也是SiliconANGLE的编辑。他说,诸如Hadoop和MapReduce这样的大数据技术才刚刚起步;很多人由于技术有限或观念陈旧,仍然将它们拒之门外。然而,在不久的将来,当软件使用门槛变低大量企业开始采用的时候,这些今天已经采用了大数据技术的企业将再次占领高地。到那时,他们会具备更丰富的信息来进行决策,也会比其他企业赚到更多的钱。
作为曾就职于TechTarget的记者,Kelly说:“我们已经研究大数据两三年了,得到的结论就是,大数据是目前业内赢取竞争优势最有力的武器。当我们得出这个结论时,我们意识到了它的轰动性。事实的确如此,我们实在想不出有哪一个行业不会受到大数据的影响。”
“大数据”这个词今天常在对机器生成的海量结构化与非结构化信息、社交媒体网站和移动设备的形容中用到。除此之外,它也用来形容可从信息中提取出有用商业洞察的存储、管理和分析技术。比较熟知的大数据管理技术包括:Apache Hadoop分布式文件系统、MapReduce、Hive、Pig和Mahout.
数据指向性的优势
在Talend Connect大会上大谈决策制定流程中业务数据指向性问题的不止Kelly一人,Tony
Fraser也是其中之一。Fraser是Ogilvy &
Mather(一家大型公关广告公司)旗下营销公司Neo@Ogilvy的创立人之一,也是技术合伙人。
Fraser说:“我们做的是数字广告。只要你能想到的领域,我们都有涉及。”
Fraser在发言中举出实例,说明了数据指向性决策为他们公司成功带来的帮助。其一是,巴黎酒店和拉斯维加斯赌场与Neo@Ogilvy合作,吸引更多的顾客。Neo@Ogilvy首先通过社交媒体和旅游网站针收集顾客对巴黎酒店的正面评价,发现大多数都与Bellagio酒店喷泉的景色和街道对面的赌场相关。根据这个信息,公司团队投放了一期电子广告,内容为喷泉旁的巴黎酒店。
Fraser说:“广告一投放出去,酒店的预定人数激增。”
大数据运用的障碍
Kelly称,大数据管理技术的概念早已传播到大街小巷,但为什么真正使用它的企业却很少呢?主要有两个原因。
第一,Hadoop与其他大数据软件的使用极其困难,而正确使用技能的培训尚未出台。目前,企业只有高薪聘请相关专业的博士才能对大数据方程式进行分析。
Kelly说:“一个Oracle DBA不一定具备管理、部署与监控Hadoop的技能。比如,一个分析层面的数据工程师需要编写MapReduce,而这样的工作可与SQL查询的编写完全不同。”
第二,目前大部分企业还缺少实施大数据的概念和计划。
现今的许多大型企业都已习惯于通过数据仓库与BI报表技术来获取业务信息。然而,Kelly认为,BI或数据仓库模型是通过数据分析对过去进行评估,而大数据技术是通过数据分析对未来进行预测。
他说:“对于这些企业来说,大数据运用需要一种观念上的转变;你需要信任数据并跟着它指的方向前进。大数据的意义就在于向前看、做出预测,然后行动。”
大数据管理的普及
Kelly认为,大数据管理和分析与其他新兴技术无异,最终都会普及,或者说会变得大众化。但是,这也需要一个过程。
由于大数据技术的复杂度对很多刚刚接触的企业都是不小的挑战,所以这些新的应用工具和软件技术需要被简化。Talend、Hortonworks和Cloudera等公司目前都在简化大数据技术的难度。Kelly说,大数据技术还需要很多革新,以让用户更简单地进行部署和管理、对Hadoop集群进行防护并在流程与数据源之间创建集成。
“现在你想成为一个顶级数据程序员,就必须具备编写MapReduce、SAS或其他语言程序的复杂技术。所以,我们需要研发出可以剔除部分专业性的工具;这样一来,即使你没有博士学位,也可以编写大数据程序了。”
大数据的普及少不了对用户的大量技能培训,内容包括大数据架构、Hadoop部署管理、数据集成与MapReduce的编程等。
Kelly说:“我们需要全面解决存在问题。一方面简化工具与技术;另一方面加强人员的培训,使DBA和业务分析师能够胜任‘大数据时代’的工作。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16