京公网安备 11010802034615号
经营许可证编号:京B2-20210330
采用大数据技术占领竞争高地
在Talend Connect大会上,一名IT业内分析专家指出,企业若不抓住大数据带来的机会,将很有可能在同行中遭到淘汰。
Jeff Kelly是Wikibon.org的首席研究员,也是SiliconANGLE的编辑。他说,诸如Hadoop和MapReduce这样的大数据技术才刚刚起步;很多人由于技术有限或观念陈旧,仍然将它们拒之门外。然而,在不久的将来,当软件使用门槛变低大量企业开始采用的时候,这些今天已经采用了大数据技术的企业将再次占领高地。到那时,他们会具备更丰富的信息来进行决策,也会比其他企业赚到更多的钱。
作为曾就职于TechTarget的记者,Kelly说:“我们已经研究大数据两三年了,得到的结论就是,大数据是目前业内赢取竞争优势最有力的武器。当我们得出这个结论时,我们意识到了它的轰动性。事实的确如此,我们实在想不出有哪一个行业不会受到大数据的影响。”
“大数据”这个词今天常在对机器生成的海量结构化与非结构化信息、社交媒体网站和移动设备的形容中用到。除此之外,它也用来形容可从信息中提取出有用商业洞察的存储、管理和分析技术。比较熟知的大数据管理技术包括:Apache Hadoop分布式文件系统、MapReduce、Hive、Pig和Mahout.
数据指向性的优势
在Talend Connect大会上大谈决策制定流程中业务数据指向性问题的不止Kelly一人,Tony
Fraser也是其中之一。Fraser是Ogilvy &
Mather(一家大型公关广告公司)旗下营销公司Neo@Ogilvy的创立人之一,也是技术合伙人。
Fraser说:“我们做的是数字广告。只要你能想到的领域,我们都有涉及。”
Fraser在发言中举出实例,说明了数据指向性决策为他们公司成功带来的帮助。其一是,巴黎酒店和拉斯维加斯赌场与Neo@Ogilvy合作,吸引更多的顾客。Neo@Ogilvy首先通过社交媒体和旅游网站针收集顾客对巴黎酒店的正面评价,发现大多数都与Bellagio酒店喷泉的景色和街道对面的赌场相关。根据这个信息,公司团队投放了一期电子广告,内容为喷泉旁的巴黎酒店。
Fraser说:“广告一投放出去,酒店的预定人数激增。”
大数据运用的障碍
Kelly称,大数据管理技术的概念早已传播到大街小巷,但为什么真正使用它的企业却很少呢?主要有两个原因。
第一,Hadoop与其他大数据软件的使用极其困难,而正确使用技能的培训尚未出台。目前,企业只有高薪聘请相关专业的博士才能对大数据方程式进行分析。
Kelly说:“一个Oracle DBA不一定具备管理、部署与监控Hadoop的技能。比如,一个分析层面的数据工程师需要编写MapReduce,而这样的工作可与SQL查询的编写完全不同。”
第二,目前大部分企业还缺少实施大数据的概念和计划。
现今的许多大型企业都已习惯于通过数据仓库与BI报表技术来获取业务信息。然而,Kelly认为,BI或数据仓库模型是通过数据分析对过去进行评估,而大数据技术是通过数据分析对未来进行预测。
他说:“对于这些企业来说,大数据运用需要一种观念上的转变;你需要信任数据并跟着它指的方向前进。大数据的意义就在于向前看、做出预测,然后行动。”
大数据管理的普及
Kelly认为,大数据管理和分析与其他新兴技术无异,最终都会普及,或者说会变得大众化。但是,这也需要一个过程。
由于大数据技术的复杂度对很多刚刚接触的企业都是不小的挑战,所以这些新的应用工具和软件技术需要被简化。Talend、Hortonworks和Cloudera等公司目前都在简化大数据技术的难度。Kelly说,大数据技术还需要很多革新,以让用户更简单地进行部署和管理、对Hadoop集群进行防护并在流程与数据源之间创建集成。
“现在你想成为一个顶级数据程序员,就必须具备编写MapReduce、SAS或其他语言程序的复杂技术。所以,我们需要研发出可以剔除部分专业性的工具;这样一来,即使你没有博士学位,也可以编写大数据程序了。”
大数据的普及少不了对用户的大量技能培训,内容包括大数据架构、Hadoop部署管理、数据集成与MapReduce的编程等。
Kelly说:“我们需要全面解决存在问题。一方面简化工具与技术;另一方面加强人员的培训,使DBA和业务分析师能够胜任‘大数据时代’的工作。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27