
Python正则表达式分组概念与用法详解
想学习大数据技术先本文实例讲述了Python正则表达式分组概念与用法。分享给大家供大家参考,具体如下:
正则表达式分组
分组就是用一对圆括号“()”括起来的正则表达式,匹配出的内容就表示一个分组。从正则表达式的左边开始看,看到的第一个左括号“(”表示第一个分组,第二个表示第二个分组,依次类推,需要注意的是,有一个隐含的全局分组(就是0),就是整个正则表达式。
分完组以后,要想获得某个分组的内容,直接使用group(num)和groups()函数去直接提取就行。
例如:提取代码中的超链接中的文本
>>> s='<div><a href="https://support.google.com/chrome/?p=ui_hotword_search" rel="external nofollow" target="_blank">更多</a><p>dfsl</p></div>'
>>> print re.search(r'<a.*>(.*)</a>',s).group(1)
更多
或者
>>> print re.match(r'.*<a.*>(.*)</a>',s).group(1)
更多
按照上面的分组匹配以后,我们就可以拿到我们想拿到的字串,但是如果我们正则表达式中括号比较多,那我们在拿我们想要的字串时,要去挨个数我们想要的字串时第几个括号,这样会很麻烦,这个时候Python又引入了另一种分组,那就是命名分组,上面的叫无名分组。
命名分组
命名分组就是给具有默认分组编号的组另外再给一个别名。命名分组的语法格式如下:
(?P<name>正则表达式)#name是一个合法的标识符
如:提取字符串中的ip地址
>>> s = "ip='230.192.168.78',version='1.0.0'"
>>> re.search(r"ip='(?P<ip>\d+\.\d+\.\d+\.\d+).*", s)
>>> res.group('ip')#通过命名分组引用分组
'230.192.168.78'
后向引用
正则表达式中,放在圆括号“()”中的表示是一个组。然后你可以对整个组使用一些正则操作,例如重复操作符。
要注意的是,只有圆括号”()”才能用于形成组。”“用于定义字符集。”{}”用于定义重复操作。
当用”()”定义了一个正则表达式组后,正则引擎则会把被匹配的组按照顺序编号,存入缓存。这样我们想在后面对已经匹配过的内容进行引用时,就可以用”\数字”的方式或者是通过命名分组进行”(?P=name)“进行引用。\1表示引用第一个分组,\2引用第二个分组,以此类推,\n引用第n个组。而\0则引用整个被匹配的正则表达式本身。这些引用都必须是在正则表达式中才有效,用于匹配一些重复的字符串。
如:
#通过命名分组进行后向引用
>>> re.search(r'(?P<name>go)\s+(?P=name)\s+(?P=name)', 'go go go').group('name')
'go'
#通过默认分组编号进行后向引用
>>> re.search(r'(go)\s+\1\s+\1', 'go go go').group()
'go go go'
交换字符串的位置
>>> s = 'abc.xyz'
>>> re.sub(r'(.*)\.(.*)', r'\2.\1', s)
'xyz.abc'
前向肯定断言、后向肯定断言
前向肯定断言的语法:
(?=pattern)
后向肯定断言的语法:
(?<=pattern)
需要注意的是,如果在匹配的过程中,需要同时用到前向肯定断言和后向肯定断言,那么必须将后向肯定断言写在正则语句的前面,前向肯定断言写在正则语句的后面,表示后向肯定模式之后,前行肯定模式之前。
如:获取c语言代码中的注释内容
>>> s1='''char *a="hello world"; char b='c'; /* this is comment */ int c=1; /* t
his is multiline comment */'''
>>> re.findall( r'(?<=/\*).+?(?=\*/)' , s1 ,re.M|re.S)
[' this is comment ', ' this is multiline comment ']
(?<=/*)这个是后向肯定断言,表示“/*”之后。(?=*/)这个为前向肯定断言,表示“*/”之前,这两合并起来就是一个区间了,所以后向肯定断言放在前向肯定断言前面。
前向否定断言、后向否定断言
前向否定断言语法:
(?!pattern)
后向否定断言语法:
(?<!pattern)
前向否定和后向否定实例:
#提取不是.txt结尾的文件
>>> f1 = 'aaa.txt'
>>> re.findall(r'.*\..*$(?<!txt$)',f1)
[]
#提取不以数字开头的文件
>>> re.findall(r'^(?!\d+).*','1txt.txt')
[]
#提取不以数字开头不以py结尾的文件
>>> re.findall(r'^(?!\d+).+?\..*$(?<!py$)','test.py')
[]
>>> re.findall(r'^(?!\d+).+?\..*$(?<!py$)','test.txt')
['test.txt']了解其对行业的影响力
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18