京公网安备 11010802034615号
经营许可证编号:京B2-20210330
AI定价+大数据 迈迈车如何玩转双路夹击
如果不能跟上脚步,时代抛弃你,甚至都不会说再见。
对二手车行业这可能不再只是网络流行语。“AI+大数据”很快就会成为平台互相PK的大招。此外,市场上还活跃着大量自媒体创业车商,对竞争激烈的各大平台来说,压力之下借助外部辅助力量来一次大变革也未尝不是新的机会。
而传统二手车经销商更加痛苦,面临得不只是门店获客成本攀升、客户体验难以优化、管理工具不够精细、营销服务能力不足等痛点,还有资金不足、人才缺失、采购成本高、单品类服务等问题,尤其在中小规模经销商身上,这些痛点更痛。这给了迈迈车这种创业企业机会。
迈迈车以二手车车源为切入口,逐步渗透二手车产业链,可以助力经销商加快转型,并形成一个“S2B”的有机生态体。“S2B”是迈迈车CEO江奇涛对二手车交易模式的创新思考。其核心能力是供应链整合能力,核心表现是对B端的各种赋能。迈迈车作为一个服务平台,一端连接着二手车经销商,另外一端连接着海量的精准车源,通过自身的业务模型优化和延伸,在帮助经销商进行线上车源检索的同时,也让车商的购买、服务和体验更为顺畅。
海量车源+AI定价+大数据匹配模式构筑护城河
迈迈车通过不断创新业务模式,将触及车源、估价、检测、交易、金融支持等进行深度的融合,其构建的独特护城河优势正在逐渐凸显出来。
首先是车源量的优势。众所周知,得车源者得天下。迈迈车的车源构成主体是批量车,主要为租赁公司、抵押担保公司等,这些车源以回笼资金为第一诉求,处置速度优于卖出价格,且均为批量规模级。再加上传统的C端车源,迈迈车已能触达市场50%以上的车源。随着迈迈车线下门店布局不断增加,吸引着众多优质车源信息和商家进场,车源量增加的情况下,用户的选择会更多,这样形成了一个正向的循环。
第二是基于AI智能定价和大数据精准推送,来满足下游二手车商的需求。通过AI定价体系来确定需求的合理性,以系统的定价为标准采购车源。经过数据分析匹配,精准推送,快速的让有需求的二手车商获得车源信息,采用的ARQS车检体系高于国家标准级别的车况鉴定,保障车况无误差。这比传统的撮合类型的平台大大提高效率,同时大数据的分析降低了人为因素的影响,而交易数据积累对于金融赋能效率的提升给与了强有力的风控支持。
正因如此,迈迈车通过车源、车商之间的高效连接,加上自身服务的不断延伸,构建起成本低、效率高、风控好的消费体验,在提升整个二手车交易效率的同时,也形成了独特的护城河。
未来有更多故事可讲
随着整个二手车行业的发展来看,迈迈车在未来也有更大的想象空间。目前迈迈车着力打造信息化支撑,有价有货的分销平台。未来两年间,迈迈车将逐步提升交易效率,提供供应链金融、内容平台引证、认证帮检服务,乃至开展汽车租赁业务。
而迈迈车更希望成为中国的Manheim。这家年交易额超过500亿美元的二手车批发交易商,主要提供线上线下交易和库存融资,客户包括美国绝大部分已经认证的经销商,拥有足够多的交易记录量和庞大的数据库。这点与迈迈车的模式非常类似。
迈迈车CEO江奇涛表示,迈迈车是开放的平台,理念是建立效率最高的平台,开放平台的效率一定是大于封闭平台的,迈迈车跟所有的平台,都是合作共存的关系,欢迎A、B、C端的车源出现在迈迈车平台上。迈迈车一直在聚焦把一件事情做好:即让二手车获得更高的周转效率。在这样一个逻辑之下,随着迈迈车AI和大数据技术的升级以及市场运营布局的完备,其未来的想象空间将会更大。
对于刚刚迈过A+轮融资门槛的迈迈车来说,有种渴望破局,但步调间却还保留着沉稳的影子。在新的发展机遇下,迈迈车合理运用AI和大数据应用、数字化和物联网在二手车流通领域的实际应用,一种全新的二手车交易模式开始崭露头角,让我们一起期待!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27