京公网安备 11010802034615号
经营许可证编号:京B2-20210330
举例讲解Python中字典的合并值相加与异或对比
这里我们来举例讲解Python中字典的合并值相加与异或对比,以不同的字典为对象来进行操作,,需要的朋友可以参考下
字典合并值相加
在统计汇总游戏数据的时候,有些数据是是每天用字典存的,当我要对多天汇总的时候,就需要合并字典了。
如果key相同的话它们的值就相加。
不能用update方法,因为用update方法则相同的key的值会覆盖,而不是相加。
千言不如一码。
def union_dict(*objs):
_keys = set(sum([obj.keys() for obj in objs],[]))
_total = {}
for _key in _keys:
_total[_key] = sum([obj.get(_key,0) for obj in objs])
return _total
obj1 = {'a':1,'b':2,'c':3}
obj2 = {'a':1,'b':3,'d':4}
print union_dict(obj1,obj2)
输出
{'a': 2, 'c': 3, 'b': 5, 'd': 4}
sum([obj.keys() for obj in objs],[])这句可能不太好理解。
其实sum()函数也有"鲜为人知的参数",即第2个参数,start参数,默认是0。
而且不止可以是int类型,还可以是其他支持+操作符的东西,比如[]。
利用这一点,可以对二层数组打平成一层。
比如
>>sum([[1,2,3],[4,5]],[])
[1,2,3,4,5]
对字典diff("异或")
在游戏中,我要监控记录物品系统中的背包变动情况。("异或"的结果是相同的消除,剩下不同的,即变动的)
假设背包的存储结构是这样的。
是一个字典,{物品id:数量}。
在背包类初始化的时候,把背包物品信息copy保存到一个oldbag变量,进行一些物品操作后(比如使用物品,领取物品奖励等),在调用save()方法存进redis时,对新的bag字典与oldbag字典进行差异对比就得出变动情况了。
千言不如一码。
def symmetric_difference(_oldobj,_newobj):
_oldkeys = _oldobj.keys()
_newkeys = _newobj.keys()
_diff = {}
for _key in set(_oldkeys + _newkeys):
_val = _newobj.get(_key,0) - _oldobj.get(_key,0)
if _val:
_diff[_key] = _val
return _diff
oldobj = {'a':1,'b':2,'c':3}
newobj = {'a':1,'b':3,'d':4}
print symmetric_difference(oldobj,newobj)
输出
{'b': 1, 'd': 4,'c': -3}
代表玩家得到了1个'b'物品,4个'd'物品,失去了3个'c'物品。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01