京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如今,大数据分析到底有多重要?McKinsey Global Institute(位于旧金山,是总部位于纽约的麦肯锡公司的研究机构)的高级合伙人Michael Chui(去年发布的麦肯锡大数据价值研究报告的作者之一)认为,在数据分析方面的能力将决定企业市场份额的得失。而且根据长久以来观察的结果,强者将会逾强(Whoever has will be given more,出自圣经之马太福音)。
“很快,我们就会看到那些领先的公司从中得到收益。”Chui说。海量数据的收集和分析已经在医疗健康领域得到了实际运用,麦肯锡在报告中预计该行业将从大数据中获得多达3000亿美元的收益,其中2000亿来自于相关成本的削减。
James Noga是Partners HealthCare System(位于波士顿的一家非营利性医疗机构)的CIO,他认为医疗行业已经认识到大数据分析能够极大地提升人类健康水平(即便不是最重要的因素)。“在我们这,即使只是基于一个很小的数据集,我们也能够通过分析来发现诸如Vioxx(一种已被发现有重大问题的药物)之类的问题”.
Noga认为尽管医院在大数据分析方面还不够成熟,但是情况正在一天天发生着变化。大量的数据正不断从医疗第一线汇集起来并经过整理和分析。Noga预计,随着人类基因组序列分析的成本降低,总有一天会给公众带来重大的福音。“无数的人正等着这些数据来进行分析利用。”Noga补充到。
数据蕴藏的新价值
Chui和Noga都参加了在马萨诸塞Cambridge举行的MIT斯隆CIO论坛,并作为数据专家阐述了大数据分析的诱人前景和面临的挑战。论坛由纽约时报的技术编辑Quentin
Hardy主持,还包括The Corporate Executive Board
Co.(CEB,位于华盛顿特区的一家咨询公司)的高级总监Shvetank Shah和Babson
College(位于马萨诸塞Wellesley)的管理和信息技术教授Tom Davenport.
数据分析的用武之地绝不仅限于医疗健康领域(已经建立了一套规范的科学方法)或者消费品行业(已经拥有大量的用户数据)。比如,基于物流行业供应链而收集的海量数据也已经开始被用于对经济趋势的分析。[page]
Hardy最近遇到了一个物流公司,其客户占了世界经济总量的3%到5%.该公司所拥有的数据对未来具有重要的指向作用,比如圣诞季的零售业状况和阿拉伯之春后约旦的走向。“我告诉他们,这些信息都可以在华尔街进行交易。”
Davenport是数据分析方面的高产作者,他最近专注在工业界并且预计大数据分析正给振兴美国制造业带来机遇。“通过数据分析,你可以及时发现问题并优化业务。”
流程和产品的数字化为企业开辟了另外一个天地。“我们可以毫无束缚地开始各种创新实践。”Chui说。
CIO在大数据分析中的角色
那么,在大数据分析中CIO应该承担什么样的角色呢?包括Partners
Healthcare的Noga在内,至少有两位与会者强烈建议业务端来领衔分析工作。“我们有部分的责任,但分析是实实在在的研发工作,IT只是提供支撑。我们负责基础架构的事情
–
比如什么类型的计算适合放在公有云、私有云或者完全掌控的数据中心里。”Noga解释说:“就我自身来说需要理解分析技术,但是不应该成为责任人。分析事关企业战略,属于研发类型,应该由具备专业素养的人来担当数据科学家(data
scientist)。”
这种看法的原因可以从一次相关的讨论结果(大数据和分析法学的挑战:数据聚积和偏好)中看出端倪:大数据时代的成功在于发现能够提升业务决策的模式。而这个过程中需要扎实的数学和技术功底,以及对业务的深刻认识。
Noga的看法得到了Davenport的赞同,后者以通用电子为例来加以说明。通用电子计划在投资超过10亿美元的全球软件中心(位于旧金山)招聘800位数据科学家。这些科学家将受聘于公司的研发部门。另外,惠普公司也在其战略规划团队中增加了数据科学家。“对此,我们给予完全正面的预期。”Davenport表示。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15