京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据价值的体现就是数据挖掘技术价值的释放
随着IT技术的发展,给传统行业带来接连不断的历史新机遇,并获得前所未有的发展步伐,比如云计算为传统中小企业节省大量资金、人力成本,提升市场竞争力,带来与同行业强者同台竞争的机会。云产业逐渐成为未来企业市场发展的主力军。在云产业背景下产生的大数据技术注也同样注定会对传统行业以及互联网行业产生不小的地震,为传统行业带来新的变革,但是目前还处于发展初期的大数据技术,很多问题还停留在纸上谈兵层面,没能得到规模化普及与应用。
而要得到普及与应用又需要解决哪些行业以及大数据本身面临的问题?不可否认,大数据的应用一旦得到普及应用,将意味着企业业务结构彻底变革与重组优化。对于行业来说,亟需解决的问题之一便是普及之后是否有一套行之有效的行业标准,个人隐私能否得到有效保障,一旦得到侵犯,是否相关法律法规做坚实后盾。
对于产业链的上游企业,也就是提供商,技术问题、人才问题、商业模式是否已经有眉目了。只有这三者得到保障,产业链下游享受服务的传统企业以及新兴的互联网企业才能认可。对于提供商才有动力去推动大数据的未来发展,促进行业快速前进。除此之外,企业自身也可以设立数据的挖掘、分析职位,这也是大数据为行业带来的福音,如果说让传统行业CIO来顶替数据的挖掘以及分析的职责,那么对未来的CIO将是一个大考。
如何体现数据的价值,以及如何确保产生的数据就一定具有大价值,这背后也、涉及到另外一层技术问题。笔者之前采访某医院CIO,据他表示,未来数据的价值确实不可估量,对于医院数据来源主要集中在电子病历一项,电子病历本身是一种结构化模板,也就是需要医务人员要将数据以关键字的形式而不是一行文字的形式录入,一旦以文字的形式录入,若干年后,数据的价值将一文不值,数据价值被埋没。
所以我们假使这些问题都在按部就班不出现任何差错的前提下进行预测,数据价值的体现就是数据挖掘技术价值的释放,挖掘技术无疑成为未来体现大数据价值的关键转折。从快速增长的海量数据中找到有价值数据是未来挖掘技术需要突围的瓶颈。
据业内专家说,如果没有强有力的挖掘工具,海量数据的增长速度超出人们开发挖掘技术的速度,海量数据最后将成为数据的坟墓,数据价值得不到有效释放,也就无从谈起大数据为行业带来前所未有的变革,不过挖掘技术的发展,需要一个过程,不是一蹴而就的事情。
目前的挖掘已经初露一些端倪,比如,目前审计署通过数据挖掘技术发现一些城市存在问题,针对性的进行解决。同时这些数据价值还能用在市场管理、风险管理、检测管理等当中。
目前数据挖掘技术确实正在朝新一波技术浪潮方向发展,与预测模型、系统集成技术结合,并分析半结构化数据和Web数据。新一代数据挖掘系统,能够分析嵌入式系统、移动系统和普世计算机各种类型的数据。同时新一代的系统能够开发出分布式挖掘技术。实施过程中根据应用需求来确定针对性实施战略。
大数据继云计算、物联网等IT技术后的又一次颠覆性技术变革,对国家治理、企业决策、流程再造、个人生活都将产生重大变革。那么在大数据时代,人类是生产者还是消费者?可以这么说人类既是生产者也是消费者,所以其界限正在变得模糊或者消融。
在企业以及人类生产过程中产生的数据逐渐成为企业的核心资产,深刻影响企业业务模式、人类的行为模式,包括重构文化组织。如果没能利用大数据价值来贴近人类、理解人类需求、高速分析做出预测,传统企业业务将会逐渐被时代甩在后边。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23