京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS—二元Logistic回归结果分析
1: 在“案例处理汇总”中可以看出:选定的案例 489 个,未选定的案例 361 个,这个结果是根据设定的 validate = 1
得到的,在“因变量编码”中可以看 出“违约”的两种结果“是”或者“否” 分别用值“1“和“0”代替, 在“分 类变量编码”中教育水平分为 5
类, 如果选中“为完成高中,高中,大专,大 学等,其中的任何一个,那么就取值为 1,未选中的为 0,如果四个都未被选中, 那么就是”研究生“
频率分别代表了处在某个教育水平的个数,总和应该为 489 个
1:在“分类表”中可以看出: 预测有 360 个是“否”(未违约)
有 129 个是 “是”(违约) 2:在“方程中的变量”表中可以看出:最初是对“常数项”记性赋值,B 为 -1.026,
标准误差为:0.103 那么 wald =( B/S.E)?=(-1.026/0.103)? = 99.2248, 跟表中的“100.029
几乎 接近,是因为我对数据进行的向下舍入的关系,所以数据会稍微偏小, B 和 Exp(B) 是对数关系,将 B
进行对数抓换后,可以得到:Exp(B) = e^-1.026 = 0.358, 其中自由度为 1, sig 为 0.000,非常显著
1:从“不在方程中的变量”可以看出,最初模型,只有“常数项”被纳入了模 型,其它变量都不在最初模型内 表中分别给出了,得分,df , Sig 三个值, 而其中得分(Score)计算公式如下:
(公式中 (Xi- X?) 少了一个平方)
下面来举例说明这个计算过程:(“年龄”自变量的得分为例)
从“分类表”中可以看出:有 129 人违约,违约记为“1” 129, 选定案例总和为 489 那么: y? = 129/489 =
0.2638036809816 x? = 16951 / 489 = 34.664621676892 所以:∑(Xi-x?)? =
30074.9979 y?(1-y?)=0.2638036809816 *(1-0.2638036809816 ) 则 违约总和为
=0.19421129888216 则:y?(1-y?)* 840.9044060372 ∑(Xi-x?)? =0.19421129888216 * 30074.9979 = 5
则:[∑Xi(yi - y?)]^2 = 43570.8 所以:
=43570.8 / 5 840.9044060372 = 7.4595982010876 = 7.46 (四舍五入)
计算过程采用的是在 EXCEL 里面计算出来的,截图如下所示:
从“不在方程的变量中”可以看出,年龄的“得分”为 7.46,刚好跟计算结果 吻合!!答案得到验证~!!!!
1:从“块
1” 中可以看出:采用的是:向前步进 的方法, 在“模型系数的综 合检验”表中可以看出: 所有的 SIG 几乎都为“0” 而且随着模型的逐渐步
进,卡方值越来越大,说明模型越来越显著,在第 4 步后,终止, 根据设定的显著性值 和 自由度,可以算出 卡方临界值, 公式为:
=CHIINV(显著性值,自由度) ,放入 excel 就可以得到结果 2:在“模型汇总“中可以看出:Cox&SnellR 方 和
Nagelkerke R 方 拟合效果 都不太理想,最终理想模型也才:0.305 和 0.446, 最大似然平方的对数值 都比较大,明显是显著的
似然数对数计算公式为:
计算过程太费时间了,我就不举例说明
计算过程了 Cox&SnellR 方的计算值 是根据: 1:先拟合不包含待检验因素的 Logistic 模型,求对数似然函数值
INL0 (指只包含“常数项”的检验) 2:再拟合包含待检验因素的 Logistic 模型,求新的对数似然函数值 InLB (包含自变量的检验)
再根据公式: 值!
即可算出:Cox&SnellR 方的
提示:
将 Hosmer 和 Lemeshow 检验 和“随机性表” 结合一起来分析 1:从 Hosmer 和 Lemeshow
检验表中,可以看出:经过 4 次迭代后,最终的卡 方统计量为:11.919, 而临界值为:CHINV(0.05,8) = 15.507
卡方统计量< 临界值,从 SIG 角度来看: 0.155 > 0.05 , 说明模型能够很好 的拟合整体,不存在显著的差异。 2:从
Hosmer 和 Lemeshow 检验随即表中可以看出: ”观测值“和”期望值 “几乎是接近的, 不存在很大差异,
说明模型拟合效果比较理想, 印证了“Hosmer 和 Lemeshow 检验”中的结果 而“Hosmer 和 Lemeshow
检验”表中的“卡方”统计量,是通过“Hosmer 和 Lemeshow 检验随即表”中的数据得到的(即通过“观测值和”预测值“)得到
的,计算公式如下所示:
x?(卡方统计量) =
∑(观测值频率- 预测值频率)^2 / 预测值的频率
举例说明一下计算过程:以计算 "步骤 1 的卡方统计量为例 " 1:将“Hosmer 和 Lemeshow 检验随即表”中“步骤 1 ” excel 中,得到如下所示结果: 的数据,复制到
从“Hosmer 和 Lemeshow 检验”表中可以看出, 步骤 1 的卡方统计量为: 7.567, 在上图中,通过 excel 计算得到,结果为 7.566569 ~~7.567 (四舍 五入),结果是一致的,答案得到验证!!
1:
从“分类表”—“步骤 1” 中可以看出: 选定的案例中, “是否曾今违约” 总计:489 个,其中 没有违约的 360 个,并且对 360
个“没有违约”的客户进 行了预测, 340 个预测成功, 个预测失败, 有 20 预测成功率为: / 360 =94.4% 340
其中“违约”的有 189 个,也对 189 个“违约”的客户进行了预测,有 95 个 预测失败, 34 个预测成功,预测成功率:34 / 129
= 26.4% 总计预测成功率:(340 + 34)/ 489 = 76.5% 步骤 1 的 总体预测成功率为: 76.5%, 在步骤 4
终止后, 总体预测成功率为: 83.4, 预测准确率逐渐提升 76.5%—79.8%—81.4%—83.4。 83.4 的预测准确率,
不能够算太高,只能够说还行。
从“如果移去项则建模”表中可以看出:“在-2 对数似然中的更改” 中的数值 是不是很眼熟???,跟在“模型系数总和检验”表中“卡方统计量"量的值是 一样的!!!
将“如果移去项则建模”和
“方程中的变量”两个表结合一起来看 1: 在“方程中的变量”表中可以看出: 在步骤 1 中输入的变量为“负债率” ,
在”如果移去项则建模“表中可以看出,当移去“负债率”这个变量时,引起了 74.052 的数值更改,此时模型中只剩下“常数项”-282.152
为常数项的对数似 然值 在步骤 2 中,当移去“工龄”这个自变量时,引起了 44.543 的数值变化(简 称:似然比统计量),在步骤 2
中,移去“工龄”这个自变量后,还剩下“负债 率”和“常量”,此时对数似然值 变成了:-245.126,此时我们可以通过公式
算出“负债率”的似然比统计量:计算过程如下: 似然比统计量 = 2(-245.126+282.152)=74.052 答案得到验证!!!
2:在“如果移去项则建模”表中可以看出:不管移去那一个自变量,“更改的 显著性”都非常小,几乎都小于 0.05,所以这些自变量系数跟模型显著相关, 不能够剔去!! 3:根据" 方程中的变量“这个表,我们可以得出 logistic 回归模型表达式:
= =
1 / 1+ e^-(a+∑βI*Xi)
我们假设 Z
么可以得到简洁表达式:
P(Y)
= 1 / 1+e^ (-z) 将”方程中的变量“ —步骤 4 中的参数代入 模型表达式中,可以得 到 logistic 回归 模型
如下所示: P(Y) = 1 / 1 + e ^ -(-0.766+0.594*信用卡负债率+0.081*负债率-0.069*地
址-0.249*功龄)
从”不在方程中的变量“表中可以看出: 年龄,教育,收入,其它负债,都没 有纳入模型中,其中:sig 值都大于 0.05,所以说明这些自变量跟模型显著不 相关。
在”观察到的组和预测概率图”中可以看出:
1:the Cut Value is 0.5, 此处以 0.5 为切割值,预测概率大于 0.5,表示 客户“违约”的概率比较大,小于 0.5
表示客户“违约”概率比较小。 2: 从上图中可以看出:预测分布的数值基本分布在“左右两端”在大于 0.5 的切割值中,大部分都是“1”
表示大部分都是“违约”客户,( 大约 230 个 违约客户) 预测概率比较准,而在小于 0.5 的切割值中,大部分都是“0” 大
部分都是“未违约”的客户,(大约 500 多个客户,未违约) 预测也很准
在运行结束后,会自动生成多个自变量,如下所示:
1:从上图中可以看出,已经对客户“是否违约”做出了预测,上面用颜色标记
的部分-PRE_1 表示预测概率, 上面的预测概率,可以通过 前面的 Logistic 回归模型计算出来,计算过程不 演示了 2:
COOK_1 和 SRE_1 的值可以跟 预测概率 (PRE_1) 进行画图, 来看 COOK_1 和 SRE_1 对预测概率的影响程度,因为
COOK 值跟模型拟合度有一定的关联,发生 奇异值,会影响分析结果。如果有太多奇异值,应该单独进行深入研究!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27