京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据管理问题亟待解决
如果在百度谷歌去搜索"大数据",你会发现,大数据包括三个V,第一个V数据量足够大;第二个V是指数据的种类非常多、结构复杂;第三个V则是对于数据的实时性要求非常高。所以,拥有大量的数据,能够快速将这些数据进行抽取,挖掘,分析,并且可供拥有者实时访问,调用,能够满足其实际需求,这就是大数据。
大数据的出现与互联网的发展息息相关,从搜索引擎、社交网站到移动终端,互联网上的信息总量正以每年50%的增速不断膨胀,其中90%的信息来自近三年,包括每个月Facebook上分享的30亿条内容,每天12TB的Twitter信息,每天淘宝上超过30亿条店铺、商品浏览记录以及上千万的成交、收藏记录等等。据IDC统计,2011年全球所产生的数据总量是1.8ZB(10的21次方),如果把这些数据刻录到CD此片中门起摞起来的高度等于地球到月球的距离!
大数据没有限定的数量,比如多少TB,或者EB的数据。若是中小企业用户,可能企业内部只有十几、二十几个人,那么十个TB对这个企业来说就是大数据了,所以大数据的概念因人而异。工信部十二五的物联网规划引人注意,其中包括海量级的数据存储,数据挖掘,图象视频的智能分析,以及信息感知和信息传输,这些规划提供了一个警示信号,即大数据是未来的发展方向,所以在此后的一段时间内,热门话题会是大数据、云存储、以及对象存储。这些都是在存储或者计算领域热门的话题。
"大数据"是大势所趋。纵观整个数据市场,甚至存储市场,用户的数据量正呈现出爆炸式的增长态势。大概四、五年前,一个邮件系统用终端存储就可以满足一个中等规模企业的需要,数据量大概在30-50T.随着企业员工数量逐年增长,邮件系统的空间也呈爆炸式增长,由于人员沟通之间邮件更容易成为沟通的桥梁,邮件的附件越来越大,邮件系统的数据量亦随之水涨船高。现在该企业的数据量恐怕已增长到2.5PB甚至更多,需要添置一台存储设备或是几台储备设备做邮件系统,可见存储需求量增长之快。
尽管大数据的产生多半是因为企业发展及数据产生的种类多元化这个"大环境"所致,但是面对这些快速增长的大数据所暴露出的问题还是让企业管理者们不安。到底该如何管理这些大数据?如何进行安全有效的保护?出现问题时怎样进行恢复?这些都是企业待解的难题。
第一、在大数据愈演愈烈之时,对于企业来说,如何经济、高效访问数据值得探讨。并非购买了最高端的存储,更昂贵的备份存储就可以高枕无忧,如何经济、高效的访问数据才是企业目前需要研究的课题之一。通常情况下,按照数据被访问频率的高低,可以将这些大数据分为热数据和冷数据,热点数据放在昂贵的介质上没有任何异议,但是冷数据放在昂贵的介质上面则会导致IT建设成本上升,是一种浪费。所以如何将冷、热数据进行分层存储,既能优化存储系统的性能,又可以有效地降低存储系统的整体拥有成本,实现一举两得是企业的突破方向。
第二,如何组织、检索、存储、处理分析这些大数据。最近开展的题为"大数据:商业领袖们的经验"的全球调查发现,稿营收企业的成功与明确的数据战略之间有着极强的关联性。大数据的时代迎面袭来,企业重视大数据的潜在价值只是一个良好的开始,如何应对海量数据在管理方面的挑战才是企业至关重要的策略之一。
第三,数据备份。数据备份可谓"老生常谈",大家一直在谈数据需要备份,备份是企业最后的保障、最后的一个利器,可以保护企业的系统依然有数据可用。10年前的"9.11"事件,早给过我们惨痛的教训:世贸中心中大约2/3企业因为未做数据备份而导致彻底倒闭。
无独有偶,就在前不久前,雅虎日本服务器系统发生故障,导致近5700家企业数据丢失,除了小林制药这样日常进行数据备份的用户可以在几天之内恢复数据外,其他用户的数据绝无回复的可能,其损失可谓"惨重".一个企业的数据信息决定着企业的生死存亡。但是今天,数据量的持续增长增加了备份和恢复的时间,是企业面临着严重的合规和宕机风险,数据备份却越来越困难。用户数据量越来越大,备份时间窗口又那么小,设备又是有限的,怎样快速把大数据中的核心数据抽取出来,保障企业数据信息能够适时进行恢复,成为企业CIO们共同考量的当务之急。
第四、重复数据删除。由于存储经理们继续降低备份数据量,重复数据删除技术从而一度成为热门的技术,但尽管这个话题已经"风靡"了多年,近三、五年的时间大家都在讲重复数据的删除。基本上主流的厂商和用户能够接受的还是把带库删除。如周一到周五的数据一样,就把重复的数据删掉,以后每天把增量的数据保存。但是有一些厂家也提倡在线存储删除,这也可行。只是现在某些技术尚不完全成熟,所以现在的重复数据删除重点还是在备份领域涉猎较多。
第五,如何节省电力、节约空间、节约成本等。面临数据爆炸式增长带来的问题,我们将怎么样节省电力、空间、成本呢?近几年企业在采购存储时,会发现存储硬件的成本在逐年走低。回顾过去,硬盘价格都是高高在上的,而现在不管是传统的机械硬盘还是SSD(固态硬盘)都开始变得越发"亲民",而价格更低的同时容量却更高了。但是,对于很多企业来说,整体的存储成本却不降反升,原因就是存储的管理成本在逐年走高。因为大数据的接茬大涨需要大量的人力管理和维护,所以如何节约IT资源,减少IT人员的压力等也是现在企业需要考虑的因素。
在大数据时代,尽管这些快速增长的海量数据所引发的一系列蹩脚问题,足以让CIO们感到炙手可热,但是管理这些数据所带来的几多挑战并不能令人窒息。完整的数据保护解决方案或许能够成为"成人之美"的一剂良药。毕竟,实践是检验真理的唯一标准,这的确是不易之论……
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20