
大数据发展趋势推动渠道未来技术和服务
在大数据时代,最受渠道欢迎的两大技术就是存储和备份,包括产品和服务。企业利用这些设备和技术可确保在需要的时候完成关键任务,归档和数据非结构化处理。但这些技术存在的问题是,他们中保存的数据是无益的。
换句话说:存储数据使企业花钱且徒劳。
进入大数据时代,很多供应商充分利用大数据趋势将竞争产品和服务推向市场。有人说,大数据只是一个重新包装的数据挖掘和商业智能分析,在一定程度上,这是真的。这也反映出企业不能再承受闲置数据的成本。
处理数据已经是一门大生意。根据德勤数据显示,企业软件销售总额今年将超过270亿美元,大约有四分之一来自于大数据,企业资源管理和商业智能。
大数据的目标相对简单:充分利用存储数据中被闲置的、非收益性质的数据来预测业务发展趋势,发掘新的机遇,并推动更高水平的销售。此外,大数据是更多是降低风险,同时使企业管理者更好地了解他们的经营环境以做出更明智准确的业务决策。
解决方案供应商可能会认为大数据是专向大型企业,学术机构和政府机构的。在今天,这个假设可能是正确的。然而,供应商,包括IBM,甲骨文公司和微软公司都在用装置和应用程序推动商业分析和大数据进一步下沉市场,使处理数据和大量生产可操作情报成为一项简单工作。
大数据即大商机。如今占据市场领先端位的是“大数据波”,它的影响力范围和潜力甚至会超过云计算。在渠道方面,大数据的产品销售,专业服务和价值主张将产生深远的影响。以下五个大数据的发展趋势,将对渠道在未来十年的技术和服务销售形成推动:
1、数据整合,重组和清理手段
任何人在处理数据和分析数据之前,他们必须有正确的数据且知其所在。听起来很合理的,对不对?不幸的是,存储的数据看起来像成堆的报纸和空箱子上一集“囤积”的构造。所以大数据销售始于帮助企业识别数据,消除冗余,优化文件系统,并确保可分析在哪里可以找到信息。如果没有数据,将没有分析。
2、硬件销售将渠道导向大数据
看上去似乎大数据在最初推动更多的将是硬件销售。对大容量的非结构化数据进行分析是处理力,存储容量和I /
O速度的一个因素。解决方案供应商可能会发现企业 -
尤其是大企业–对可以处理大数据负载的高性能设备或集群服务器求之若渴。即使大数据作为云服务提供,这也将需要在大量新的硬件上运行所有分析工作的负载。
3、存储和商业智能将合并
存储和备份供应商通常爱讨论其性能,对信息的保护和利用力。存储是关于容量和管理效率,毕竟,存储和备份供应商及云文件共享服务正在发展存储行业以达成合作或提供大数据产品和服务。他们认识到单凭数据不再能坐的稳牢,开始计划巩固并提升他们目前作为大型数据存储库供应商的地位,使现有存储业成为诞生新一代大数据的基础。这将极大地改变存储厂商性质和他们的渠道架构。
4、对安全的需求将拉动大数据的增长
在当今的云和分布式企业时代,真正的大数据需要开放的数据存储以适应越来越多的内部组成,应用程序,托管资源和第三方专家。随着越来越多的人和自动化资源接触到数据,那么安全风险和漏洞将会激增,则与大数据相关的安全需求将同步增长,提供访问控制,身份认证,数据加密,入侵预防,审计和调整等服务。目前,安全技术的需求已随云计算的成长在增加。未来几年内,大数据亦将成为促进安全技术及专业支持的催化剂,预计这将在安全市场上有100万美元以上的空间。
5、商业管理“成为一种服务”
大数据是关乎商业,更具体地说,是关乎管理 - 前GE
CEO杰克@韦尔奇有一段着名的引述说,“不可测量则不能管理”.大数据则有着超越测量,且完成预测分析的更佳表现。大企业的通过自己进行这类业务来展示技术和能力是受限的。在今天,他们对分析师和定量专家进行投资;明天,他们将由对技术和分析的需求转向IT解决方案供应商。那么,解决方案的供应商通过其提供大数据预测分析,降低经营风险的专业服务,在未来十年中将开拓一个利润丰厚的市场。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29