京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python二分查找详解
这篇文章主要给大家汇总介绍了Python二分查找的几种实现的方法,有需要的小伙伴可以参考下。
先来看个实例
#!/usr/bin/env python
import sys
def search2(a,m):
low = 0
high = len(a) - 1
while(low <= high):
mid = (low + high)/2
midval = a[mid]
if midval < m:
low = mid + 1
elif midval > m:
high = mid - 1
else:
print mid
return mid
print -1
return -1
if __name__ == "__main__":
a = [int(i) for i in list(sys.argv[1])]
m = int(sys.argv[2])
search2(a,m)
运行:
administrator@ubuntu:~/Python$ python test_search2.py 123456789 4
3
注:
1.'__':由于python的类成员都是公有、公开的被存取public,缺少像正统面向对象语言的私有private属性。
于是就用__来将就一下,模拟私有属性。这些__属性往往是内部使用,通常情况下不用改写。也不用读取。
加上2个下划线的目的,一是不和普通公有属性重名冲突,二是不让对象的使用者(非开发者)随意使用。
2.__name__ == "__main__"表示程序脚本是直接被执行的.
如果不等于表示脚本是被其他程序用import引入的.则其__name__属性被设为模块名
Python采用二分查找找出数字的下标
要考虑有重复数字的情况
class Solution(object):
def searchRange(self, nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: List[int]
"""
def binary_search(start,end,value):
while end>=start:
mid = (start+end)//2
print(mid)
if nums[mid]>target:
end = mid-1
elif nums[mid]<target:
start = mid+1
else:
if value==-1:
if mid-1>=start and nums[mid+value] == target:
end = mid+value
else:
return mid
else:
if mid+1<=end and nums[mid+value] == target:
start = mid+value
else:
return mid
return -1
a=binary_search(0,len(nums)-1,-1)
b=binary_search(0,len(nums)-1,1)
return [a,b]
a = Solution()
l = [2,2]
print(a.searchRange(l,2))
二分算法的定义不在多说了,百度一下就知道(支持国产大笑)
import sys
source = [1,2,3,4,5,6,7,8,9,10] #must be in order
des = int(sys.argv[1])
low = 0
high = len(source) - 1
targetIndex = -1
print "des=",des
while low <= high:
middle = (low + high)/2
if des == source[middle]:
targetIndex = middle
break
elif des < source[middle]:
high = middle -1
print "middle element[index=",middle,",value=",source[middle],"] is bigger than des, continue search from[",low,"to",high,"]"
else:
low = middle + 1
print "middle element[index=",middle,",value=",source[middle],"] is smaller than des, continue search from[",low,"to",high,"]"
print "search complete, target element's index in source list is ",targetIndex
最后在分享一个
'fileName--BinarySearch.py'
src = []
def BinarySearch(low, high, target, *src):
'二分查找'
while low <= high:
mid = (low + high) // 2
midVal = src[mid]
if target < midVal:
high = mid - 1
elif target > midVal:
low = mid + 1
else:
return mid
BinarySearch(low, high, target, *src)
print('Please input 10 number:')
for number in range(10):
src.append(int(input('Num %d:' % number)))
sortList = tuple(src)
key = int(input('Please input key:'))
location = BinarySearch(0, len(src) - 1, key, *sortList)
if location != None:
print('Find target at %d' % (location + 1))
else:
print('No target!')
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04