
大数据的时代 让APP读懂你的口味
当城市开始飞速发展,世界变化已经让人应接不暇的时候,唯有跟上才不算掉队。这是一个信息化的时代,也是一个信息过度膨胀的时代,也许每天打开邮箱接收到的邮件已经足以湮没一个清醒的头脑,而为了把握这个快节奏的城市而在车上或是每个闲暇时间点开一个个新闻APP则是在生存和前进中找到一丝方向。
幸好移动产品飞速发展,所以我们才能避免抱着电脑边走边看的一幕出现。而信息永远是来如潮水,想要把握似乎总有些难度。当你想了解当前的时事热点或者行业新闻,也许你可以打开传统的门户新闻客户端看某个新闻板块,或者刷微博看你关注的人众说纷纭,亦或者看你收藏的某个博客的新鲜观点,再或者可以在微信上收听某个知名博主的言论。但是这一切的过程,你依然觉得繁琐,因为不管是点击开的哪一个产品,都没办法帮你一站式找到你要的那些信息。信息的检索变成一个困难的过程,零碎的信息让效率变成一个问题,用户需要一个简单的方式来处理这样的信息狂潮。
“信息+大数据处理”就是答案。这是一个信息化的时代,科技无处不在,信息也是,大数据处理则是解决大量数据的方法之一,而今日头条这一款移动应用就是先行实践者。
大数据产品对泛滥的信息处理,不是此前的诸多模式中的一种。在传统信息处理时代,有各种通过人工方式对新闻和相关信息分类,甚至在每个网站都会对不同的内容分门别类,或者在值得关注的新闻点上汇总制作主题,这也和现今微信的处理方式如出一辙。但是优质的数据处理采取的方式没那么简单,因为内容源的提供者单方面制作的信息分类并不能满足用户的个体需求,就好比如今百度会根据用户的搜索推荐不同的产品一样,一个完善的数据处理也会根据用户点击不同的新闻内容分析用户可能感兴趣的新闻,针对性推荐给用户,这就是今日头条这款APP的亮点之处。
APP读懂你的口味,不是单纯的屏蔽关键词或者找到你的需求点,而是最大可能的给你感兴趣的内容。你的口味,有喜欢,也有不喜欢,它都知道。
不喜欢看财经内容,那便没有股市行情或者业内分析出现;不喜欢看体育新闻,科比或者乔丹也不会出现在你的视线范围内;不关注互联网,OK,科技博客自然是不用给你做推荐咯!作为你的专职信息处理师,它一定比你更了解你不喜欢的内容。
不喜欢财经,却偏偏关注苹果或者三星的交易财报,好的,苹果的最新消息一定提供给你;不喜欢体育,却独独钟爱帅气的小贝,好的,这个不难;不关注互联网,但是偶尔新浪或者微信有点什么事还是得了解以免落伍没有谈资,这个也很容易!这就是今日头条信息处理的高明所在。
新型的信息处理,不仅仅是粗略的把用户不喜欢的内容剔除,而是在用户不喜欢的内容中找到用户感兴趣的点,个性化在不同的产品中的体现不同,但有一点是互通的,就是从粗犷的分类中找到细致处,细化分类。然后再分类,再处理。直到对数据的细分不再成为分类,而是关键词组合,让APP产品读懂自己服务的用户,减小用户被狂轰滥炸的可能性,同时让每一次信息显示都成为有效性最高的推荐。
不少用户都记得在很多产品中,往往选择了自己不中意的分类后,那些信息就被一网打尽。而今日头条获取用户感兴趣的分类并非单纯依靠用户自己选择的内容,而是在用户使用的过程中,一次次对用户行为进行分析甄别。用户每一次的阅读和选择,都会成为一个独立的数据库,用户点击的新闻内容会被分析,例如:从来没有看过体育新闻的用户却点击过数条贝克汉姆的新闻内容,说明这个用户感兴趣的不是体育,而是“贝克汉姆”,下次有小贝的消息的时候,用户便不会错过。而同样的道理,不管你是否对某一方面的内容感兴趣,这款APP都能感知到你的喜好,甚至比你更了解你是否会喜欢这样的一条内容。
照此下去,可以预见的是,随着用户体验时间越久,越能和这款产品融合。产品会发展成用户的朋友,提供的信息也会越来越对用户的胃口。对于大数据处理来说,这才是让科技服务人类的实践。总的来说,就是让科技更懂人类,让人类更了解科技,大数据处理的成绩,今日头条给出了答案:我比用户更懂用户。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09