京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代:你完全想象不到自己的数据有多大的价值
进入信息大爆发之后的年代,我们已经习惯了网络为自己带来的便利,习惯了足不出户便知天下事的豪情,习惯了动动手指便能购尽世间万物的爽利,但所谓有利就有弊,我们需要付出的代价则是个人数据。其实通过等价交换的原则来看,数据显然没有普通人认为的毫无价值。
我们在网络中畅游,每时每刻都在产生着数据,而这些数据若单独拿出来看,无法获得有效的价值,但是联动起来之后所带来的附加价值,更会震惊所有人。
数据从未缺少 只是还未被记录
从古至今,数据永远伴随在我们身边,不过在过去,由于我们的数据没有被有效的记录与整理,因此造成了数据上的浪费。而在现代社会,由于用户上网时的操作会被记录,因此以前得不到保留的数据存续了,用户的数据被集中起来进行归纳处理,价值便在归纳之后陡然显现。
举一个简单的例子,当我们需要在网上点一份外卖时,商户能够很轻易获得我们许多个人的信息,如送餐上门需要的家庭或者单位地址及电话;还能根据用户之前的消费习惯进行菜品上的调整, 如加辣或者不加辣;根据用户使用的移动支付渠道,可以了解用户的信用度以及是否拥有其他贷款等更多信息。
从以上的例子就能看出,如果有需要,商家甚至能够继续追踪下去,直至对用户进行完全的画像。这便是数据足够以后形成了大数据,而这也是大数据的特点,高容量、多样性、关联性强、应用价值高等特点。
尤其在即将到来的物联网时代,数据更会出现指数级增长,我们使用的所有智能设备都能完整的把我们所有行为通过数据记录下来。数据的骤然增长,也将对我们自身进行更为精准的画像。
数据的价值在于发现其背后的规律
简单来说,通过收集这些数据进行分析之后,将会发现大数据将比我们自身更了解自己。这其实不难理解,我们自己也无法准确记住每时每刻自己在做何事,但通过智能设备却能准确记录下来,并且还会进行整理分析。
不要小看数据的价值,当数据量还稀少时,由于缺乏联动性,因此价值还未显现,但是当样本足够多时,将会从中发现出必然的规律,而这些规律即是价值的体现。但是当数据量还不够多时,却可能得出错误的结论。
用抛硬币来举例,在绝对公平且没有外力干扰的情况下,当我们抛掷数量过少时,可能由于运气缘故造成同一面连续多次出现,这时可能会错误的认为其中一面出现的几率要比另一面更高。但是通过把抛掷的次数增加,会发现其实正反面出现的几率均趋近于二分之一,随着数据量的增多,这个数字也会与二分之一更加接近,这便是数据的价值,发掘其中的规律。
大数据时代下的精准营销
我们个人数据同理,大数据时代下,通过收集到足够多的数据进行分析后,可以挖掘其中背后潜藏的规律。而在发现出这些规律之后,除了能够为用户进行画像,还能为企业提升业务,降低运营成本,进行精细化运营做出更多的贡献。
比如通过收集某个客户的数据,可以知道这位客户喜欢运动、注重养生,特别喜欢在晚饭过后进行慢跑,甚至能够知道具体的跑步时长以及路线。对于电商可以对该客户推荐一些运动日用品,对于餐饮业则可以推荐一些适合养生的菜品,或者结合用户其他更多的数据,可以精准的判断其需求是什么,这样精准化运营将会使企业在节省大量成本的条件下创造更多价值。
当然,这样一来就带来了一个后果,那便是数据安全。个人数据也许将让企业更好的了解用户,让用户享受到更加优质的服务,但是当这些服务变成了骚扰,推荐变成了轰炸后,用户就已经明白自己的数据被泄漏了。
数据安全既是财产安全
个人数据的泄露是如今网络最常见的网络犯罪,而数据泄露也会对个人造成严重的困扰,小到信息骚扰推送,大到信用卡的盗刷以及个人信息冒用,严重的甚至会造成刑事犯罪。
因此对于用户而言,目前国内的个人数据安全形势非常严峻,由于特殊的国情使然,造成许多应用程序必须让客户开放自己的个人隐私数据才可以使用。有数据显示,目前手机APP越界获取个人信息已成为网络诈骗的主要源头,高达96.6%的安卓应用会获取用户手机隐私权限,而iOS应用的这一数据也高达69.3%。
通过这些被跨界获取的个人隐私数据,已经在全球都形成了一个庞大的“黑色产业”,年产值甚至高达上千亿元。这些黑产从业者,利用大数据进行精确推送,诱导用户消费,已经开始跨过了法律的边界。这些黑产庞大的流动资金,也在侧面证明了个人数据的价值,也希望用户能够明白自己的数据有多么珍贵。
小结
前段时间百度李彦宏说过,中国消费者乐意用自己的隐私数据换取便利。但需要注意的是,也许目前消费者不得不用自己的隐私去换取方便,但随着个人隐私数据重视程度的不断提升,这种企业也将不得不做出改变。
用户的数据是一处被掩埋的金矿,我们发现了,可以用它来获得更好的服务,但不是以强迫的方式,毕竟数据的所有权在用户本身。大数据时代,我们自身的数据更会价值连城。让用户明白自身数据的价值,让用户掌握自己的数据,让用户能够与企业平等相待,也是大数据时代的真正意义所在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27