京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python sort、sorted高级排序技巧
Python list内置sort()方法用来排序,也可以用python内置的全局sorted()方法来对可迭代的序列排序生成新的序列。
1)排序基础
简单的升序排序是非常容易的。只需要调用sorted()方法。它返回一个新的list,新的list的元素基于小于运算符(__lt__)来排序。
你也可以使用list.sort()方法来排序,此时list本身将被修改。通常此方法不如sorted()方便,但是如果你不需要保留原来的list,此方法将更有效。
另一个不同就是list.sort()方法仅被定义在list中,相反地sorted()方法对所有的可迭代序列都有效。
2)key参数/函数
从python2.4开始,list.sort()和sorted()函数增加了key参数来指定一个函数,此函数将在每个元素比较前被调用。 例如通过key指定的函数来忽略字符串的大小写:
key参数的值为一个函数,此函数只有一个参数且返回一个值用来进行比较。这个技术是快速的因为key指定的函数将准确地对每个元素调用。
更广泛的使用情况是用复杂对象的某些值来对复杂对象的序列排序,例如:
同样的技术对拥有命名属性的复杂对象也适用,例如:
3)Operator 模块函数
上面的key参数的使用非常广泛,因此python提供了一些方便的函数来使得访问方法更加容易和快速。operator模块有itemgetter,attrgetter,从2.6开始还增加了methodcaller方法。使用这些方法,上面的操作将变得更加简洁和快速:
operator模块还允许多级的排序,例如,先以grade,然后再以age来排序:
4)升序和降序
list.sort()和sorted()都接受一个参数reverse(True or False)来表示升序或降序排序。例如对上面的student降序排序如下:
5)排序的稳定性和复杂排序
从python2.2开始,排序被保证为稳定的。意思是说多个元素如果有相同的key,则排序前后他们的先后顺序不变。
注意在排序后'blue'的顺序被保持了,即'blue', 1在'blue', 2的前面。
更复杂地你可以构建多个步骤来进行更复杂的排序,例如对student数据先以grade降序排列,然后再以age升序排列。
6)最老土的排序方法-DSU
我们称其为DSU(Decorate-Sort-Undecorate),原因为排序的过程需要下列三步:
第一:对原始的list进行装饰,使得新list的值可以用来控制排序;
第二:对装饰后的list排序;
第三:将装饰删除,将排序后的装饰list重新构建为原来类型的list;
例如,使用DSU方法来对student数据根据grade排序:
>>> decorated = [(student.grade, i, student) for i, student in enumerate(student_objects)]
>>> decorated.sort()
>>> [student for grade, i, student in decorated] # undecorate
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
上面的比较能够工作,原因是tuples是可以用来比较,tuples间的比较首先比较tuples的第一个元素,如果第一个相同再比较第二个元素,以此类推。
并不是所有的情况下都需要在以上的tuples中包含索引,但是包含索引可以有以下好处:
第一:排序是稳定的,如果两个元素有相同的key,则他们的原始先后顺序保持不变;
第二:原始的元素不必用来做比较,因为tuples的第一和第二元素用来比较已经是足够了。
此方法被RandalL.在perl中广泛推广后,他的另一个名字为也被称为Schwartzian transform。
对大的list或list的元素计算起来太过复杂的情况下,在python2.4前,DSU很可能是最快的排序方法。但是在2.4之后,上面解释的key函数提供了类似的功能。
7)其他语言普遍使用的排序方法-cmp函数
在python2.4前,sorted()和list.sort()函数没有提供key参数,但是提供了cmp参数来让用户指定比较函数。此方法在其他语言中也普遍存在。
在python3.0中,cmp参数被彻底的移除了,从而简化和统一语言,减少了高级比较和__cmp__方法的冲突。
在python2.x中cmp参数指定的函数用来进行元素间的比较。此函数需要2个参数,然后返回负数表示小于,0表示等于,正数表示大于。例如:
或者你可以反序排序:
当我们将现有的2.x的代码移植到3.x时,需要将cmp函数转化为key函数,以下的wrapper很有帮助:
当需要将cmp转化为key时,只需要:
从python2.7,cmp_to_key()函数被增加到了functools模块中。
8)其他注意事项
* 对需要进行区域相关的排序时,可以使用locale.strxfrm()作为key函数,或者使用local.strcoll()作为cmp函数。
* reverse参数任然保持了排序的稳定性,有趣的时,同样的效果可以使用reversed()函数两次来实现:
* 其实排序在内部是调用元素的__cmp__来进行的,所以我们可以为元素类型增加__cmp__方法使得元素可比较,例如:
* key函数不仅可以访问需要排序元素的内部数据,还可以访问外部的资源,例如,如果学生的成绩是存储在dictionary中的,则可以使用此dictionary来对学生名字的list排序,如下:
*当你需要在处理数据的同时进行排序的话,sort(),sorted()或bisect.insort()不是最好的方法。在这种情况下,可以使用heap,red-black tree或treap。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20