京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的时代 要让APP读懂你
当城市开始飞速发展,世界变化已经让人应接不暇的时候,唯有跟上才不算掉队。这是一个信息化的时代,也是一个信息过度膨胀的时代,也许每天打开邮箱接收到的邮件已经足以湮没一个清醒的头脑,而为了把握这个快节奏的城市而在车上或是每个闲暇时间点开一个个新闻APP则是在生存和前进中找到一丝方向。
幸好移动产品飞速发展,所以我们才能避免抱着电脑边走边看的一幕出现。而信息永远是来如潮水,想要把握似乎总有些难度。当你想了解当前的时事热点或者行业新闻,也许你可以打开传统的门户新闻客户端看某个新闻板块,或者刷微博看你关注的人众说纷纭,亦或者看你收藏的某个博客的新鲜观点,再或者可以在微信上收听某个知名博主的言论。但是这一切的过程,你依然觉得繁琐,因为不管是点击开的哪一个产品,都没办法帮你一站式找到你要的那些信息。信息的检索变成一个困难的过程,零碎的信息让效率变成一个问题,用户需要一个简单的方式来处理这样的信息狂潮。
“信息+大数据处理”就是答案。这是一个信息化的时代,科技无处不在,信息也是,大数据处理则是解决大量数据的方法之一,而今日头条这一款移动应用就是先行实践者。
大数据产品对泛滥的信息处理,不是此前的诸多模式中的一种。在传统信息处理时代,有各种通过人工方式对新闻和相关信息分类,甚至在每个网站都会对不同的内容分门别类,或者在值得关注的新闻点上汇总制作主题,这也和现今微信的处理方式如出一辙。但是优质的数据处理采取的方式没那么简单,因为内容源的提供者单方面制作的信息分类并不能满足用户的个体需求,就好比如今百度会根据用户的搜索推荐不同的产品一样,一个完善的数据处理也会根据用户点击不同的新闻内容分析用户可能感兴趣的新闻,针对性推荐给用户,这就是今日头条这款APP的亮点之处。
APP读懂你的口味,不是单纯的屏蔽关键词或者找到你的需求点,而是最大可能的给你感兴趣的内容。你的口味,有喜欢,也有不喜欢,它都知道。
不喜欢看财经内容,那便没有股市行情或者业内分析出现;不喜欢看体育新闻,科比或者乔丹也不会出现在你的视线范围内;不关注互联网,OK,科技博客自然是不用给你做推荐咯!作为你的专职信息处理师,它一定比你更了解你不喜欢的内容。
不喜欢财经,却偏偏关注苹果或者三星的交易财报,好的,苹果的最新消息一定提供给你;不喜欢体育,却独独钟爱帅气的小贝,好的,这个不难;不关注互联网,但是偶尔新浪或者微信有点什么事还是得了解以免落伍没有谈资,这个也很容易!这就是今日头条信息处理的高明所在。
新型的信息处理,不仅仅是粗略的把用户不喜欢的内容剔除,而是在用户不喜欢的内容中找到用户感兴趣的点,个性化在不同的产品中的体现不同,但有一点是互通的,就是从粗犷的分类中找到细致处,细化分类。然后再分类,再处理。直到对数据的细分不再成为分类,而是关键词组合,让APP产品读懂自己服务的用户,减小用户被狂轰滥炸的可能性,同时让每一次信息显示都成为有效性最高的推荐。
不少用户都记得在很多产品中,往往选择了自己不中意的分类后,那些信息就被一网打尽。而今日头条获取用户感兴趣的分类并非单纯依靠用户自己选择的内容,而是在用户使用的过程中,一次次对用户行为进行分析甄别。用户每一次的阅读和选择,都会成为一个独立的数据库,用户点击的新闻内容会被分析,例如:从来没有看过体育新闻的用户却点击过数条贝克汉姆的新闻内容,说明这个用户感兴趣的不是体育,而是“贝克汉姆”,下次有小贝的消息的时候,用户便不会错过。而同样的道理,不管你是否对某一方面的内容感兴趣,这款APP都能感知到你的喜好,甚至比你更了解你是否会喜欢这样的一条内容。
照此下去,可以预见的是,随着用户体验时间越久,越能和这款产品融合。产品会发展成用户的朋友,提供的信息也会越来越对用户的胃口。对于大数据处理来说,这才是让科技服务人类的实践。总的来说,就是让科技更懂人类,让人类更了解科技,大数据处理的成绩,今日头条给出了答案:我比用户更懂用户。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27