
大数据能否让地震预警更加快速有效
说地震预测预报是最重要的世界难题,这绝不为过。重要是因为它的发生会涉及大面积的人生命安全与财产安全,困难是因为其覆盖的科学领域太多,太繁杂。
预测地震为什么如此困难?
说地震预测预报是最重要的世界难题,这绝不为过。重要是因为它的发生会涉及大面积的人生命安全与财产安全,困难是因为其覆盖的科学领域太多,太繁杂。
我们知道,每天的天气预报多数是通过地面气象站收集到的气温数据与风力和空气湿度来判断未来24小时的情况,再结合气象卫星和数学模型进行验证。而最近大家都关注的PM2.5则更简单,就用仪器对观测点进行抄数据就可以,不做预测工作。但是地震预测预报则非常困难,原因是你首先要知道该地区属于什么地震带,其地质结构是什么样子。因为,没有这个基础,收上来的数据所建立的模型可能都是错误的。其次是模型的准确性,由于地震的发生机理非常复杂,所以我们所建立的数学模型还不能完全真实的反应,比如一个非线性的变化,我们多数是通过线性模型来反应,这对结果有很大的偏差,数学中称为混沌效应。最后是采集数据庞大。关于地震的数据,采集的种类多,项目杂,地域广,时间长,因此基础数据的存储需要很大的数据量。
好在尽管如此复杂,我们还是逐渐摸索出了一条新路,让地震预警不再遥远。
用数据监控形成预警网
由于我国也是地震多发区,上个世纪发生过多次大地震,建国后在周总理的亲自指导下,由著名地质学家李四光带队,从板块学说入手,建立了一支群测群防的地震预报队。具体方法是这样的,在板块比较活跃的地带,先形成多个观测网点,然后层层落实到人,进行基础参数的观测。这其中的参数包括地磁、地电、磁偏角、地面温度,以及地下水水温,水位和水中气体氡的含量。观测点每天将自己的数据观测出来后记录下来,汇成表格,作为备案,如果有异常,就要向上一级区县级地震小组汇报反映。由于基层观测点的设备比较基础简陋,数据是否准确,县级以上会做出判断甄别,去除干扰信号。然后区再向市级与省级汇报,最后汇报到国家地震局。
可见,这其实是一个很大的地震预警网,如果观测点很多,产生的数据量也会很大,光光凭简单的人工手绘制趋势图比较原始,而且如果地震很快发生,可能这种工作只能起到记录作用,而失去了预警作用。但是,就是这样的原始预警系统,在上个世纪七十年代还准确预测出了辽宁海城地震,让世界地震预报界感到震惊。
中国今年2月的地震预警系统,也是基于这个原理。据成都高新减灾研究所所长王暾介绍,他们所开发的地震预警系统原理是这样的:“地震波分为纵波和横波,纵波的速度很快、垂直传播,横波横向传播,但它的速度只有每秒3.5公里左右。我们的接收装置接收地震的纵波信号后,就用无线电(速度=光速)快速传播到预警系统,并就此向地震波尚未到达的地方进行预警。
中国地震局工作人员也表示,中国地震局“国家地震烈度速报与预警工程”目前已经进入发改委立项程序,计划投入20亿元,用5年时间建设覆盖全国的由5000多个台站组成的国家地震烈度速报与预警系统。目前该工程正在福建省试点。
大数据技术保护我们的生命与财产安全
推而广之,其实地震火山等等都可以利用这种原理进行试试监测。只是观测点越多,需要存储和处理的数据就越多,美国在黄石火山安放了几百个观测仪器,数据实时传到他们的预警系统,然后通过互联网对外发布。所以,一旦黄石火山出现问题,美国政府会率先知道。观测数据分为两部分,一部分是常规数据,另一部分是异常突发数据。一个地区的异常突发数据越多,产生地震的可能性就越大。所以预警系统主要是对这些数据进行快速反应。
这里说到大数据除了海量数据存储与加工处理,还有一个问题,就是数据的多样性,地震问题就更加明显。我们刚刚列举的是大地震前的自然地理特征参数指标,其实动物异常也是一个很重要的指标。比如唐山大地震前,不光是地下水位上涨,水温提高,就是老鼠蛇以及猫青蛙都有异常反应。这些其实一般人如果留意都可以发现。可以想见,一个那么大的地震,生物不可能没有任何征兆。我们进行地震预报预测人的目的,就是通过各种手段,找到这些蛛丝马迹,然后快速确认,把消息传达给广大人民群众,使得灾害损失达到最小。
现在地震预报出现了很多所谓的民间科学家,他们也经常根据动物或者地磁的变化来判断地震,当然这里的误差也比较大,但是这毕竟是一种尝试,我觉得在人的生命面前,这样的尝试应该是被容许的。所以,我希望现在那些地方小的地震预测网站可以通过多数人的手机图片拍摄或者短信消息上传来汇集震前动物异常,至少这可以为专业地震局提供最真实资料,这其实也是大数据收集的一种,这样的行为应该是合法的。
敬畏自然 尊重生命
我们生活在这个地球上,地震、火山、海啸以及洪水就像我们地球母亲的感冒和咳嗽一样,我们不可能完全排除,重要的是我们要知道什么情况下这种事情会发生,当今科技日新月异,我们希望新的大数据技术能在防震减灾方面多做贡献,让惨剧不再发生!同时,向全世界所有为地震预测预报作出贡献的专家致敬!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29