
大数据时代下的第三方数据公司和甲方公司的差异
现在是一个大数据时代,人人嘴边都挂着数据创造价值、数据挖掘等一些热词。各公司内部也逐渐认识到数据的重要性,纷纷成立数据部门,期待数据可以真正的为业务服务。另外,也有一些专做数据服务的第三方公司不断涌现,希望能够帮助产生数据的甲方分担数据分析的担子,挖掘出更多有价值的规律,帮助甲方不断改进业务水平、不断发现业务中存在的问题。从这个角度来讲,甲方公司与第三方数据服务公司的初衷是一致的。
那么到底在第三方公司做数据服务和甲方公司做数据服务有没有哪些不同呢?今天马海祥结合最近几年第三方公司到甲方公司做数据的经历,对二者做数据方面的差异进行了一个简单的总结:
1、追求不同
第三方公司与甲方公司关于数据服务的合作模式大致有这样几种:
(1)、长期监测流量数据——定期提供日报、周报、月报;
(2)、临时项目——接到甲方公司的需求,发起项目,在规定的项目周期内,以报告的形式总结项目研究成果。
无论哪种合作方式,马海祥觉得第三方分析人员在分析的过程中,总是孤独的、总是更依赖数据的。因为不在所分析的环境之内,不知道运营最近在做什么,不知道产品有什么样的计划,一句话:不知道对方关注的点到底在哪里。
甲方公司内部做数据,其实合作方式也同上面列的两种差不多。只是细节配合上有所不同:
(1)、研究前会详细了解项目的背景及产品或运营人员的困惑;
(2)、研究中遇到数据上无法解释的问题,可以随时找到相关的人员反馈情况。和业务同事一起分析数据异常的原因。
(3)、研究后会汇报整个研究成果、和业务同事讨论下一步的改进策略及方案、约定下一次的研究时间点。
所以说,受到条件所限,尽管初衷与甲方公司是一致的,但是由于无法深入接触业务,因此对于最终的目标只能停留在完成一份严谨、专业的数据分析报告上。至于后续,甲方公司如何使用这份报告,如何改进业务、是否改进业务等一系列后续的工作都不得而知。因此,第三方公司的成果产出总是不能在整个业务链条上形成一个闭环。
但是,马海祥觉得这个也的确是无法避免的一个事情。相信目前大多数公司,尤其是中国的大部分公司,对公司内部数据的私密性还是比较看重,对于第三方公司的态度不会是完全开放的。因此,双方的配合也仅限于比较浅层的合作。第三方公司想要真正走完业务闭环,从现阶段来讲是完全不可能的。
久而久之,第三方的数据分析人员也就习惯了把制作一份精良的报告作为最终的目标。
2、展现形式不同
对于第三方公司与甲方公司的合作方式,项目的价值就体现在报告上,因此报告的制作既要美观又要让人感到“物超所值”。只有几页的PPT是绝不能作为最后的产出成果的。如果能在研究时,通过建立某个复杂的模型,来辅助说明研究成果就会显得更有价值。
而在甲方公司内部,大家都迫切的想知道,看到这个研究成果我到底能做什么。如果这个模型复杂到产品人员都看不懂,或不知所措,那也是没有意义的。反而是针对某个具体问题的研究,哪怕只有几页纸,几个数据,也会令产品人员很兴奋。
比如,偶尔从数据上看到一些现象或问题,此时做一个简单的整理,打印出几页纸就可以去和产品、运营的同学去聊了。去看看业务一线的同事是如何看待这一现象的,是不是有一些重要的运营策略影响了某些数据结果,造成数据结果异常,而并非真正出现了问题。如果没有其他异常因素的影响依旧出现了这个现象,那么我们下面真的要立项去花时间找到问题的原因了。
3、对行业标准的把握不同
第三方数据公司由于服务行业内的多家公司,因此会将同行业公司的相同业务模块放在一起,出一个行业标准。在不透露客户商业机密的情况下,为客户提供行业标准数据。使各家都可以清楚的了解其在行业中的地位,了解哪些数据表面上看起来很好看,但是与行业标准对比,其实情况并不乐观。我想,这也是第三方数据公司的最大价值所在。
但是,现状是中国的互联网行业,大家对数据还是守得很紧,不愿意过多的让第三方介入。这造成的结果就是,大家都没有一个行业标准。数据结果的好坏就只能依靠经验了。对此,大家可以看下我曾在马海祥博客发布的《如何做好一个产品的市场调研和数据分析》文章。
4、成就感体现不同
第三方数据公司,核心业务就是对数据进行采集、分析,因此负责产出数据报告的数据分析人员,相比之下,工作成果很容易被大家看到。因此,也很受到公司的重视。
而在甲方公司,数据服务是一个职能线,是为产品和运营人员服务的。或许工作价值的体现只有在完整走完业务链条后才能够体现出来。即便走完整个业务链条,又如何评估数据在整个过程中的作用,也是一个艰难的工作。但是,作为一个数据分析人员,能够看到自己的分析,帮助产品或运营发现了问题,使产品体验或运营机制得到了改善,这种成就感还是会使分析人员振奋的,还是会兴致勃勃的冲向下一个项目。
记得我刚从第三方公司进入新的企业公司做第一个项目的时候,项目汇报当天得到了产品人员的肯定。我当时非常高兴,感到工作得到了认可。以为产品同事都认可了,肯定领导也会觉得还不错吧。但是,结果却是完全相反的。主管对于我没有任何下一步结果追踪计划感到很不解,从我们严肃的谈话中我深切的体会到,在甲方公司数据真的是为产品改进或运营服务的。如果你的发现仅停留在问题的总结和整理上,那工作基本上只做了50分。相当于,医生只为病人拍了x光,之后就对病人置之不理了。
综上所述,这两种数据分析工作的差异,给我的体会是:数据分析重点不在数据,而在于如何能够真正的解决实际的问题。数据分析师的终极价值不是会使用多少种统计工具,能挖掘出多少个数据模型,而是真正的懂业务。看到数据结果能够知道哪些业务出现了问题,而看到业务问题又可以清楚的知道通过分析哪些数据能够获知问题的原因。当然,如果从大的方面来讲,各公司都能够愿意与第三方公司合作,通过第三方公司把行业标准建立起来,那将会使数据最终发挥更大的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18