京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据如何影响卫星产业
视频点播服务商(如Netflix和Amazon Prime)之间竞争加剧给卫星运营商造成明显挑战。此外,消费者对付费电视的大量选择也对运营商降低服务价格形成了压力。
尽管出现这些问题,卫星行业仍然在持续发展。
Dataxis公司发现在2016年第二季度到2017年第二季度这一年间,直播到户(DTH)卫星广播市场的用户数量增加了700万,从2.38亿增长到2.45亿,这与有线电视用户数量的减少量大致相当。一颗卫星可以通过大数据来保持其活力,卫星运营商已经使用人工智能(AI)-更具体的来讲是机器读取-来预测和分析多年的数据,来帮助他们更好的细分市场和创建更多定制化的订阅套餐。随着视频点播和多屏幕服务需求的激增,运营商可以通过多个连接的设备终端获得增长的收视率数据的数量和种类。
尽管大数据为卫星运营商带来了新的机遇,但变化也随之出现。
通用数据隐私条例 (GDPR)将于2018年在整个欧盟(EU)生效,这将使得从电视运营商的收视率数据中分析出一些具有指导性的结果更具吸引力(例如减少对第三方数据的依赖)且更具挑战性(例如法规要求的日渐严格)。
GDPR中规定了新的义务。 消费者的授权是必须有的,运营商必须让他们的用户了解到,他们会在流程的所有步骤中收集数据。
GDPR有可能不仅仅影响欧洲的付费电视观众。 事实上,它还有望成为世界其他地区立法的模板。
那么一旦GDPR通过,收集数据将会变得有多难?虽然消费者已经习惯在互联网上提供数据,但通常只是在社交软件这种免费服务上。
客户也许很不情愿向一个已经收取每月订阅费用的卫星运营商来提供这些信息。
但从另一方面看,卫星运营商已经经营很长时间了,因此他们通常会得到用户的信任,并且与新进入视频点播这种付费电视市场的服务提供商相比,他们可能更容易得到用户关于收集数据的认可。
在涉及利用大数据方面,卫星运营商可以采用几种不同的方法。具有半人工智能的内容获取、安排和分发工具优势的“内容效率预测”模型正日渐流行。
特别是,内容获取策略可以建立在预测模型和投资收益率(ROI)分析上。
这些模型与传统的推荐模型不同,因为它们考虑的是观众群,而非特定的观众(或家庭)。
这些模型的核心是内容和内容相似度的向量表示。关于内容的向量表示有很多方法,包括内生和外因,这可以为运营商带来显著的成本节约或额外的服务收入。
人工智能的模型具有学习的能力,从而使得在提出建议和提高内容效率上更加准确,尤其是在一段时间的实践以后。
在今天的互联世界中,运营商必须充满活力并快速地适应变化。 人工智能允许运营商通过改变算法来不断提高其服务质量以适应消费者的行为。
未来卫星运营商和大数据的会如何? 大数据算法正在发展。
在过去的几年里,我们看到了人工智能领域的传统模式与深度学习、机器学习相结合的重大改进,我们也看到了计算能力和数据访问(连接/数据库)的交互作用。
在这种情况下,人工智能的全部功能可通过CPU性能、更好的算法以及实时访问大型数据库来实现。
这些元素的聚合为市场和消费者分析提供了新的范例。
数据一直是卫星业务的一部分,但现在正在发生的变化是对行为的反应越来越接近实时了。
分析行为的老方法可能会有长达数月的滞后期,而对于那些有退出服务想法的客户而言,可能在此期间已经做出决定。
最终,这些进步正在帮助全球的卫星运营商更好地利用大数据,以更具意义的方式了解他们的用户(即提供有针对性的内容)并开辟新的盈利计划,特别是与定向广告相关的计划。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22