
Python使用zip合并相邻列表项的方法示例
本文实例讲述了Python使用zip合并相邻列表项的方法。分享给大家供大家参考,具体如下:
1》使用zip()函数和iter()函数,来合并相邻的列表项
>>> x
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> zip(*[iter(x)]*2)
[(1, 2), (3, 4), (5, 6), (7, 8)]
>>> zip(*[iter(x)]*3)
[(1, 2, 3), (4, 5, 6), (7, 8, 9)]
>>> zip(*[iter(x)]*4)
[(1, 2, 3, 4), (5, 6, 7, 8)]
之所以会出现上述结果,是因为:
>>> [iter(x)]*3
[<listiterator object at 0x02F4D790>, <listiterator object at0x02F4D790>, <listiterator object at 0x02F4D790>]
可以看到,列表中的3个迭代器实际上是同一个迭代器!!!
2》 在1》的基础上,封装成一个函数,如下:
>>> x
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> group_adjacent = lambda a, k: zip(*([iter(a)] * k))
>>> group_adjacent(x,3)
[(1, 2, 3), (4, 5, 6), (7, 8, 9)]
>>> group_adjacent(x,2)
[(1, 2), (3, 4), (5, 6), (7, 8)]
>>> group_adjacent(x,1)
[(1,), (2,), (3,), (4,), (5,), (6,), (7,), (8,), (9,)]
3》使用zip()函数和切片操作,来合并相邻的表项
>>> x
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> zip(x[::2],x[1::2])
[(1, 2), (3, 4), (5, 6), (7, 8)]
>>> zip(x[0::2],x[1::2])
[(1, 2), (3, 4), (5, 6), (7, 8)]
>>> zip(x[0::3],x[1::3],x[2::3])
[(1, 2, 3), (4, 5, 6), (7, 8, 9)]
>>> zip(x[::3],x[1::3],x[2::3])
[(1, 2, 3), (4, 5, 6), (7, 8, 9)]
4》 在3》的基础上,封装成函数,如下:
>>> x
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> group_adjacent = lambda a, k: zip(*[a[i::k] for i in range(k)])
>>> group_adjacent(x,3)
[(1, 2, 3), (4, 5, 6), (7, 8, 9)]
>>> group_adjacent(x,2)
[(1, 2), (3, 4), (5, 6), (7, 8)]
>>> group_adjacent(x,1)
[(1,), (2,), (3,), (4,), (5,), (6,), (7,), (8,), (9,)]
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13