
促进大数据与精准扶贫深度融合
深入实施国家大数据战略,是提升精准扶贫效率的重要举措,但目前,大数据精准扶贫还存在大数据还不够准确、扶贫数据缺少共享开放机制、扶贫系统及平台标准不统一等瓶颈,亟需创新思路,促进大数据与扶贫脱贫工作的深度融合,让扶贫工作更加透明、高效、精准、全面。
用大数据助力精准扶贫,打好打赢脱贫攻坚战和大数据突围战,是践行新时代精准扶贫战略的重要举措。当前,应深入实施国家大数据战略,充分利用大数据助力精准扶贫,着力解决大数据精准扶贫中的一系列瓶颈性问题,促进大数据与扶贫脱贫工作的深度融合。
大数据是提升精准扶贫效率的重要途径
通过大数据精准扶贫云系统,可以有效解决当前脱贫攻坚工作中扶贫数据不通、数据不准等问题,切实提高精准扶贫效率。
一是通过相关部门多维度数据对比分析,自动预警、实时推送异常信息,帮助扶贫干部对贫困户进行精准识别。二是以“扶贫云”的建档立卡贫困户数据为基础,通过扶贫相关部门数据对贫困户进行精准画像,实时掌握国家、省、市、县、乡、村各级帮扶干部情况及对应帮扶贫困户信息,实时预测贫困户致贫、返贫现象。三是可根据贫困大学生实时录取信息,自动比对和身份识别,推送给教育、财政、扶贫等相关部门,实现“一站式”教育精准扶贫资金等自动减免。四是通过移民局数据及时掌握各地区易地扶贫搬迁情况,可精准分析研判搬迁贫困户的安置率、入住率、就业率和户均累计收入等指标。五是通过大数据可视化,呈现各家帮扶企业对各贫困村、贫困户的帮扶情况,可查看每家企业所帮扶的贫困户人员具体名单,企业名称、帮扶地点、帮扶人数、帮扶金额、帮扶途径,一目了然,实时掌握企业帮扶贫困户和贫困户被帮扶进程。
同时,通过大数据全样本数据、“数过留痕”、可关联比对分析等特征,将大数据及相关分析结果作为扶贫成效评估考核的重要依据。
一是可以评估产业扶贫帮扶效益。通过实时统计各地区建档立卡数据采集和识别精准率情况,查看贫困人口人均收入状况和达标率,分析扶贫产业(种植、养殖、农产品加工、农产品流通等)的帮扶效益。二是有助于扶贫成效分析。通过数据统计功能,实时掌握管辖区内各类指标的统计情况,包括致贫原因、脱贫指标、男女比例、年龄分布等扶贫动态指标,为相关部门工作及成效评估提供决策支撑。三是可作为扶贫干部工作成效的评估依据。实时掌握省、市、县、乡、村各级帮扶干部情况及对应帮扶贫困户信息,从贫困户找到帮扶干部,从干部找到对应帮扶贫困户,实现对扶贫过程、扶贫结果、扶贫成效全过程监督。
大数据精准扶贫仍面临发展瓶颈
首先,精准扶贫大数据还不够准确。精准扶贫数据,是实现精准识别、精准帮扶的基础,但当前系统误差标准不一、扶贫系统过多、功能不完善、数据量少、采集方式原始等,是影响精准扶贫大数据不够准确的主要因素。一方面,各地各部门信息化建设程度不同,数据存储管理方式不同、更新周期不一,技术力量及硬件设施等方面保障力度存在巨大差异。另一方面,平台功能不完善,导致精准扶贫识别准确率不高。例如,扶贫云系统使用率不高,数据采集渠道较窄,特别是脱贫攻坚相关数据收集不足,系统云缺乏更多、更广泛的数据源提供。产业扶贫相关数据采集度低,全面实施扶贫大数据分析存在困难。此外,信息采集方式原始导致数据不精准。当前,系统的基础信息采集工作,主要依赖帮扶干部、村支两委及驻村工作队入户采集,填写纸质资料,数据采集受人为不确定性因素影响多,扶贫数据很难达到精准。
其次,缺乏有效的扶贫数据共享开放机制。扶贫数据之间的共享,是精准比对和精准识别的关键,但目前缺乏数据交互及共享机制。例如,国务院扶贫办“全国扶贫开发信息系统”、省级扶贫办“扶贫云”系统和各个地(市州)自行开发的扶贫系统在业务架构、承建商等方面各不相同,逻辑关系复杂,数据共享存在较大困难,部分数据还需重复录入,数据录入工作量大,增加了基层负担。同时,数据共享无法实时更新,影响了系统应用及共享。此外,跨部门、跨行业数据共享交换艰难,精准扶贫需要各行业、各部门数据进行比对、分析,但“数据孤岛”大量存在,给精准扶贫成效带来了较大阻力。不同部门和区域间的数据标准差异,也增加了信息资源共享的难度。
再次,扶贫系统及平台标准不统一。大数据精准扶贫目前仍处于探索阶段,没有经验可循,系统功能不完善,也缺乏统一的系统结构及国家标准。有些精准扶贫大数据系统设计不接地气,操作复杂,与实际工作存在冲突,影响了平台的使用及推广。例如,在全国扶贫开发信息系统中,由于功能开放权限要逐级授权,贫困户新增、删除、自然增减功能每年只开放一次,贫困户的动态管理工作较困难,需要采用原始的纸质资料管理,待系统开放时才能进行录入,增加了基层干部及信息系统工作量,降低了扶贫效率。
创新思路将大数据融入脱贫攻坚全过程
第一,加快建设“全国一张网”的大数据精准扶贫系统平台。统一国家、省(市)、地(市州)的大数据扶贫系统平台,建立各扶贫系统间的数据共享机制,在贵州、甘肃、云南、西藏等深度贫困地区,推广应用升级版的大数据精准扶贫应用平台。
一是统一大数据扶贫系统平台。建议由国务院扶贫开发领导办公室牵头,工信部、农业农村部、科技部、财政部等配合,协同做好“精准扶贫大数据支撑平台”的推广应用、下级用户账户分配和管理、平台APP端的下载安装指导、使用答疑等工作,避免出现多系统、多部门管理精准扶贫系统情况,确保基层帮扶干部能用会用,充分发挥精准大数据平台功能。二是有效打通系统间的数字鸿沟。积极寻求政策支持,整合各级扶贫云的系统功能,建立数据共享机制。三是构建国家、省(市)、地(市州)级大数据处理和云管理中心。充分利用云平台基础资源,遵循统一网络平台、统一安全体系、统一运维管理的一体化项目建设原则,将扶贫对象的脱贫返贫情况及时通过“大数据”管理好,实现扶贫数据的实时观测、分析和对比,让扶贫工作变得更加透明、高效、精准和全面。四是制定精准扶贫大数据国家标准。国家标准委应加快调研,尽快将精准扶贫大数据建设地方标准上升为国家标准,率先试点、及时反馈,制定公平合理、标准统一的大数据精准扶贫国家标准。
第二,有效打通部门间的数据壁垒。
加快建立完善扶贫数据共享交换机制。打通部门间的扶贫相关数据,完善数据共享交换,建立健全相关保障机制,丰富和完善“扶贫云”数据资源库,提升扶贫大数据的实时性、精准性。统筹推进数据共享交换。明确各部门数据共享范围边界和使用方式,厘清各部门数据管理及共享权利义务,依托政府数据统一共享交换平台,大力推进扶贫领域基础数据资源建设及与各部门信息系统的跨部门、跨区域共享。在依法加强安全保障和隐私保护前提下,按照“扶贫+”的思路,强化与相关职能部门间的统筹配合,建立数据动态交换机制,完成扶贫大数据平台的横向数据连接、传输和整合,将大数据融入到脱贫攻坚全过程,实现部门数据的互通互联、资源共享。同时,简化跨部门数据资源共享流程。有关职能部门应简化明确跨部门数据资源共享交换流程,在确保数据共享交换实时、准确、安全的前提下,加快推进扶贫相关业务数据共享交换进程,消除部门间的“数据孤岛”。深化跨部门数据资源开放程度,提升数据共享交换程度,增强“扶贫云”统揽扶贫相关业务数据的能力,为“扶贫云”更好地服务和支家脱贫攻坚行动提供有力的技术支撑。五是扶贫数据有限授权开放。在确保数据与贫困对象信息安全的前提下,实现“大数据”向各级扶贫部门授权开放,向社会有限度开放,打通扶贫系统与其他系统的网络连接,共享气候、水质、土质、经济、生产等资源,促进脱贫攻坚问题精准施策。
第三,充分利用大数据精准扶贫提升扶贫绩效。
当前,应加快示范引领,做好村级示范,完善系统功能、不断提升扶贫云系统实用价值,发挥大数据扶贫功能,提升扶贫绩效。
一是完善系统基本功能。进一步研究扶贫信息系统的逻辑错误筛查功能,及时对错误信息进行预警,完善系统基本功能、提升扶贫云系统智能化水平,减少人工干预,解决工作中人为操作带来的干扰及错误。二是加强扶贫子系统开发设计。在国办扶贫系统基础上,按照统一平台、统一标准、统一数据的要求,开发建设具有自身特色的子扶贫云和精准扶贫个案管理相关系统,激发更广泛的扶贫工作创新,保证数据的统一性、完整性、灵活性,强化特色扶贫工作和个案扶贫措施应用。三是建设好地方特色的大数据精准扶贫监测公共数据平台。依托各个省级扶贫云系统建设,实现扶贫开发工作的精准识别、精准帮扶、精准管理、精准考核,通过大数据扶贫监测平台建设,倒逼精准扶贫精准脱贫政策的全面落实,为精准扶贫绩效考核提供科学决策支撑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14