
Python异常对代码运行性能的影响实例解析
Python的异常处理能力非常强大,但是用不好也会带来负面的影响。我平时写程序的过程中也喜欢使用异常,虽然采取防御性的方式编码会更好,但是交给异常处理会起到偷懒作用。偶尔会想想异常处理会对性能造成多大的影响,于是今天就试着测试了一下。
Python异常(谷歌开源风格指南)
tip:
允许使用异常, 但必须小心。
定义:
异常是一种跳出代码块的正常控制流来处理错误或者其它异常条件的方式。
优点:
正常操作代码的控制流不会和错误处理代码混在一起. 当某种条件发生时, 它也允许控制流跳过多个框架. 例如, 一步跳出N个嵌套的函数, 而不必继续执行错误的代码。
缺点:
可能会导致让人困惑的控制流. 调用库时容易错过错误情况。
结论:
异常必须遵守特定条件:
像这样触发异常: raise MyException("Error message") 或者 raise MyException . 不要使用两个参数的形式( raise MyException, "Error message" )或者过时的字符串异常( raise "Error message" )。
模块或包应该定义自己的特定域的异常基类, 这个基类应该从内建的Exception类继承. 模块的异常基类应该叫做”Error”。
class Error(Exception):
pass
永远不要使用 except: 语句来捕获所有异常, 也不要捕获 Exception 或者 StandardError , 除非你打算重新触发该异常, 或者你已经在当前线程的最外层(记得还是要打印一条错误消息). 在异常这方面, Python非常宽容, except: 真的会捕获包括Python语法错误在内的任何错误. 使用 except: 很容易隐藏真正的bug。
尽量减少try/except块中的代码量. try块的体积越大, 期望之外的异常就越容易被触发. 这种情况下, try/except块将隐藏真正的错误。
使用finally子句来执行那些无论try块中有没有异常都应该被执行的代码. 这对于清理资源常常很有用, 例如关闭文件。
当捕获异常时, 使用 as 而不要用逗号. 例如
try:
raise Error
except Error as error:
pass
设计实验方式
采取比较简单直观的对照实验。
先定义一个装饰器,用来计算每个函数执行所需时间:
def timer(func):
import time
def wrapper(*args, **kwargs):
startTime = time.time()
f = func(*args, **kwargs)
endTime = time.time()
passTime = endTime - startTime
print "执行函数%s使用了%f秒" % (getattr(func, "__name__"), passTime)
return f
return wrapper
然后用该装饰器装饰测试的函数即可。
再定义一个叫do_something的函数,这个函数中就做一件事,把1赋值给变量a。在每个测试函数中,都会调用这个函数1000000次。
do_something:
def do_something():
a = 1
我根据情况设计了不同的测试组:
测试组1(直接执行耗时操作):
@timer
def test1():
for _ in xrange(1000000):
do_something()
测试组2(耗时操作放在try中执行,不抛出错误):
@timer
def test2():
try:
for _ in xrange(1000000):
do_something()
except Exception:
do_something()
else:
pass
finally:
pass
测试组3(try放耗时操作中,try每一次操作,不抛出错误):
@timer
def test3():
for _ in xrange(1000000):
try:
do_something()
except Exception:
do_something()
else:
pass
finally:
pass
测试组4(try放耗时操作中,try每一次操作并进行异常处理(捕捉抛出的特定异常)):
@timer
def test4():
zero = 0
for _ in xrange(1000000):
try:
if zero == 0:
raise ZeroDivisionError
except ZeroDivisionError:
do_something()
else:
pass
finally:
pass
测试组5(try放耗时操作中,try每一次操作并进行异常处理(捕捉所有异常 try…except BaseException)):
@timer
def test5():
zero = 0
for _ in xrange(1000000):
try:
if zero == 0:
raise ZeroDivisionError
except BaseException:
do_something()
else:
pass
finally:
pass
测试组6(try放耗时操作中,try每一次操作并进行异常处理(捕捉所有异常 不带任何异常类型)):
@timer
def test6():
zero = 0
for _ in xrange(1000000):
try:
if zero == 0:
raise ZeroDivisionError
except:
do_something()
else:
pass
finally:
pass
测试组7(耗时操作放在except中):
@timer
def test7():
zero = 0
try:
if zero == 0:
raise ZeroDivisionError
except ZeroDivisionError:
for _ in xrange(1000000):
do_something()
else:
pass
finally:
pass
测试组8(防御式编码):
@timer
def test8():
zero = 0
for _ in xrange(1000000):
if zero == 0:
do_something()
执行结果
对比结论
通过对比1和2,可以得知直接执行耗时操作和耗时操作放在try中执行并无异常触发时性能消耗几乎是一样的。
通过对比2和7,可以得知使用异常的使用无论是把代码放在 try 中执行还是在 except 中执行性能消耗几乎是一样的。
通过对比2和3,可以得知当不抛出错误时,把try放耗时操作中比耗时操作放在try中性能消耗要略大。
通过对比3和4,可以得知当使用try时无异常抛出跟使用try时抛出异常性能消耗几乎相差好几倍。
通过对比4和5,可以得知try放耗时操作中时,try每一次操作并进行异常处理(捕捉抛出的特定异常)跟try每一次操作并进行异常处理(捕捉所有异常 try…except BaseException)性能消耗几乎是一样的。
通过对比4和8,可以得知使用防御性方式编码比捕捉异常方式性能消耗几乎相差好几倍。
通过对比5和6,可以得知捕捉所有异常(try…except)方式比捕捉所有异常(try…except BaseException)方式要略快。
总结
由以上对比结论,可以总结为:
无论是把代码放在 try 中执行还是在 except 中执行性能消耗几乎是一样的。
直接执行代码与放在try中执行且不抛出异常时性能消耗几乎是一样的,当然理论上try会消耗一点性能,可以忽略不计。
虽然try…except的方式比try…except BaseException和捕捉抛出的特定异常的方式要略快,但扔不建议采取这种方式,因为前者很容易隐藏真正的bug,从而带来严重后果。
通常要采取捕捉抛出的特定异常而不是捕捉所有异常,虽然二者性能消耗几乎一样。
防御性方式编码比捕捉异常方式性能消耗几乎相差好几倍,应尽量采取这种编程方式,提升性能并且更靠谱。
以上就是本文关于Python异常对代码运行性能的影响实例解析的全部内容,希望对大家有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14