京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据提高电子政务效率的主要体现
大数据是继云计算、物联网之后IT产业又一次颠覆性的技术变革,对国家治理方式、决策、组织和业务流程、提供公共服务的方式等都将产生巨大的影响。随着互联网、云计算、物联网等信息技术的迅猛发展,大量数据的收集、储存、分析、处理及其应用变得更加方便,政府或公众的决策行为将逐渐基于数据和分析而做出,而非像以前基于经验和直觉。电子政务建设因为大数据时代的到来,变得更加高效、快捷。
创造大价值
大数据的发展,将极大地改变政府的管理模式。其包容性将模糊掉政府各部门间、政府与市民间的边界,信息孤岛现象大幅消减,数据共享成为可能,从而提高政府各机构的协同办公效率和为民办事效率,提升政府社会治理能力和公共服务能力。具体而言,依托大数据的发展,有利于节约政府投资、加强市场监管,从而提高政府决策能力、提升公共服务能力,实现区域化管理。
利用大数据整合信息,将工商、国税、地税、质监等部门所收集的企业基础信息进行共享和比对,通过分析,可以发现监管漏洞,提高执法水平,达到促进财税增收、提高市场监管水平的目的。建设大数据中心,加强政务数据的获取、组织、分析、决策,通过云计算技术实现大数据对政务信息资源的统一管理,依据法律法规和各部门的需求进行政务资源的开发和利用,可以提高设备资源利用率、避免重复建设、降低维护成本。
大数据也将进一步提高决策的效率,提高政府决策的科学性和精准性,提高政府预测预警能力以及应急响应能力,节约决策的成本。以财政部门为例,基于云计算、大数据技术,财政部门可以按需掌握各个部门的数据,并对数据进行分析,作出的决策可以更准确、更高效。另外,也可以依据数据推动财政创新,使财政工作更有效率、更加开放、更加透明。
借助大数据,还能逐步实现立体化、多层次、全方位的电子政务公共服务体系,推进信息公开,促进网上办事实时受理、部门协同办理、反馈网上统一查询等服务功能,加快推进智能化电子政务服务和移动政务服务新模式的初步应用,不断拓展个性化服务,进一步增强政府与社会、老百姓直接的双向互动、同步交流。
基于城市网格化的管理需要一个统一协调的管理信息整合,各类基础资源和信息都应该是共享的,大数据可以实现这一点。通过充分利用大数据的各类资源,发挥城市网格化管理效用,达到最大程度的共享应用,以提升城市和社区的服务质量、提高服务能力、加强服务管理,创建服务型社会,使城市管理工作和社区服务水平迈上更高的台阶。
助推大建设
虽然目前我国基于大数据的信息共享建设取得了一定的成效,但是,从总体来看,跨部门的信息资源利用系统仍局限在小部分的政府业务范围,而且应用的深度和广度还远远不够,不能满足当今社会发展的要求。因此,我们需要顺应大数据这个趋势,建设基于大数据的网上办事大厅、交换共享平台、社会诚信体系、容灾备份体系和公开平台,建立政务云计算平台,积极推进电子政务建设。
建设省、市、县三级统一的,集信息公开、网上办理、便民服务、电子监察于一体的网上办事大厅,通过虚拟的网上服务窗口,提供一站式、跨地域、全天候、全透明的各类社会服务和管理事项。同时,推动各级实体性行政办事大厅向网上办事大厅迁移,实现跨部门网上办理事项的有效整合,推进全流程网上办事。
统筹建设省、市、县三级大数据交换共享平台,完善交换共享平台的覆盖范围,打通信息横向和纵向的共享渠道,推进跨地区、跨部门信息资源共享和业务协同。同时,完善全省政务信息资源目录体系,制定全省政务信息资源共享目录和数据标准,强化对各类信息资源的整合,为省、市、县各政府深化电子政务应用提供跨层级、跨部门的数据支撑。建立数据中心之间以及各级政务数据库之间交换、整合、比对、更新、维护机制,建设自然人、法人、空间地理等基础数据库,为社会管理、公共服务和宏观调控提供数据支撑。
整合来自于政府职能部门及企事业单位、行业协会、中介组织的信用信息资源,推动和规范诚信机构建设,提供完整、准确、及时的企业和个人诚信信息。同时,建立个人信用信息平台,探索个人信用体系建设模式,促进个人信用信息的开发利用,奠定建设诚信社会的坚实基础。
开展以云计算为基础的电子政务公共服务平台的顶层设计,建设集中统一的区域性电子政务云平台,为政府部门提供高效的服务器资源、海量的存储空间、高速的网络带宽和安全的网络环境。电子政务云平台将按统一标准建设,即插即用,政府部门可根据自身需求,定制使用。创造一个信息共享、资源共用、运维共管的新局面,逐步实现政府部门统一服务器管理、统一机房、统一运维的目标,以充分整合资源、提高资源利用率、减少重复投资。
建设容灾备份设施,为党政用户提供统一的容灾备份服务。通过数据备份、数据复制等技术实现数据级容灾,确保各部门业务数据的完整性、一致性和可用性,同时,对部分重要应用系统实现快速切换、数据零丢失的应用级容灾,从而为全省政府部门提供网络、数据以及应用系统的灾难备份与恢复服务。
通过大数据中心建设,将政务部门的数据进行汇总、清洗、比对分析后,形成信息资源,并建设一个大数据公开平台,统一对社会开放政务数据,提高整个社会对信息资源的开发利用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05