京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python中使用%与.format格式化文本方法解析
初学python,看来零零碎碎的格式化文本的方法,总结一下python中格式化文本的方法。使用不当的地欢迎指出谢谢。
1、首先看使用%格式化文本
常见的占位符:
常见的占位符有:
%d 整数
%f 浮点数
%s 字符串
%x 十六进制整数
使用方法:
>>> 'Hello, %s' % 'world'
'Hello, world'
>>> 'Hi, %s, you have $%d.' % ('Michael', 1000000)
'Hi, Michael, you have $1000000.'
使用的时候不知道写什么的地方直接使用 %s 进行代替,语句的末尾加上 %() 括号里面直接填写内容即可(字符串加上引号,中间用“,”分割),如果只有一个%?,括号可以省略。
高级一点的用法:
格式化整数指定是否补零:
首先看代码:
?
>>> '%d-%d' % (3, 23)
'3-23'
>>> '%2d-%2d' % (3, 23)
' 3-23'
>>> '%3d-%3d' % (3, 23)
' 3- 23'
>>> '%4d-%4d' % (3, 23)
' 3- 23'
>>> '%01d-%01d' % (3, 23)
'3-23'
>>> '%02d-%02d' % (3, 23)
'03-23'
>>> '%03d-%03d' % (3, 23)
'003-023'
>>> '%04d-%04d' % (3, 23)
'0003-0023'
>>>
可以看得出来,d前面的数字用来指定占位符,表示被格式化的数值占用的位置数量(字节还是什么不知道这样的表述是否正确),指定之后比如%3d,代表这个整数要占用3个位置,前面如果有0代表占用的地方使用0补齐,没有就使用空格补齐。指定的空间位置小于实际的数字大小,以实际占用的位置大小为准。
指定小数的位数:
>>> '%.f' % 3.1415926'3'
>>> '%.1f' % 3.1415926'3.1'
>>> '%.2f' % 3.1415926'3.14'
>>> '%.3f' % 3.1415926'3.142'
>>>
可以看出.后面的数字用来表示保留的小数点的位数,".1"代表保留小数点后面一位小数。
如果不确定应该用什么,%s永远起作用,它会把任何数据类型转换为字符串:
>>> 'Age: %s. Gender: %s' % (25, True)
'Age: 25. Gender: True'
有些时候,字符串里面的%是一个普通字符怎么办?这个时候就需要转义,用%%来表示一个%:
>>> 'growth rate: %d %%' % 7
'growth rate: 7 %'
尝试使用其他方法对%进行转义,但是好像没有用,有什么其他方法欢迎评论。
2、使用format 方法进行格式化
代码演示:
age = 25
name = 'Swaroop'
print('{0} is {1} years old'.format(name, age))
print('Why is {0} playing with that python?'.format(name))
位置使用{1}按照使用的顺序写好,后面格式使用 .format() 写好对应的参数即可。
输出结果:
Swaroop is 25 years old
Why is Swaroop playing with that python?
其实也可以使用第一种方法实现:
age = 25
name = 'Swaroop'
print('%s is %s years old'%(name, age))
print('Why is %s playing with that python?'%(name))
输出
Swaroop is 25 years old
Why is Swaroop playing with that python?
实现的结果都是一样的。
总结
以上就是本文关于python中使用%与.format格式化文本方法解析的全部内容,希望对大家有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01