
python中使用%与.format格式化文本方法解析
初学python,看来零零碎碎的格式化文本的方法,总结一下python中格式化文本的方法。使用不当的地欢迎指出谢谢。
1、首先看使用%格式化文本
常见的占位符:
常见的占位符有:
%d 整数
%f 浮点数
%s 字符串
%x 十六进制整数
使用方法:
>>> 'Hello, %s' % 'world'
'Hello, world'
>>> 'Hi, %s, you have $%d.' % ('Michael', 1000000)
'Hi, Michael, you have $1000000.'
使用的时候不知道写什么的地方直接使用 %s 进行代替,语句的末尾加上 %() 括号里面直接填写内容即可(字符串加上引号,中间用“,”分割),如果只有一个%?,括号可以省略。
高级一点的用法:
格式化整数指定是否补零:
首先看代码:
?
>>> '%d-%d' % (3, 23)
'3-23'
>>> '%2d-%2d' % (3, 23)
' 3-23'
>>> '%3d-%3d' % (3, 23)
' 3- 23'
>>> '%4d-%4d' % (3, 23)
' 3- 23'
>>> '%01d-%01d' % (3, 23)
'3-23'
>>> '%02d-%02d' % (3, 23)
'03-23'
>>> '%03d-%03d' % (3, 23)
'003-023'
>>> '%04d-%04d' % (3, 23)
'0003-0023'
>>>
可以看得出来,d前面的数字用来指定占位符,表示被格式化的数值占用的位置数量(字节还是什么不知道这样的表述是否正确),指定之后比如%3d,代表这个整数要占用3个位置,前面如果有0代表占用的地方使用0补齐,没有就使用空格补齐。指定的空间位置小于实际的数字大小,以实际占用的位置大小为准。
指定小数的位数:
>>> '%.f' % 3.1415926'3'
>>> '%.1f' % 3.1415926'3.1'
>>> '%.2f' % 3.1415926'3.14'
>>> '%.3f' % 3.1415926'3.142'
>>>
可以看出.后面的数字用来表示保留的小数点的位数,".1"代表保留小数点后面一位小数。
如果不确定应该用什么,%s永远起作用,它会把任何数据类型转换为字符串:
>>> 'Age: %s. Gender: %s' % (25, True)
'Age: 25. Gender: True'
有些时候,字符串里面的%是一个普通字符怎么办?这个时候就需要转义,用%%来表示一个%:
>>> 'growth rate: %d %%' % 7
'growth rate: 7 %'
尝试使用其他方法对%进行转义,但是好像没有用,有什么其他方法欢迎评论。
2、使用format 方法进行格式化
代码演示:
age = 25
name = 'Swaroop'
print('{0} is {1} years old'.format(name, age))
print('Why is {0} playing with that python?'.format(name))
位置使用{1}按照使用的顺序写好,后面格式使用 .format() 写好对应的参数即可。
输出结果:
Swaroop is 25 years old
Why is Swaroop playing with that python?
其实也可以使用第一种方法实现:
age = 25
name = 'Swaroop'
print('%s is %s years old'%(name, age))
print('Why is %s playing with that python?'%(name))
输出
Swaroop is 25 years old
Why is Swaroop playing with that python?
实现的结果都是一样的。
总结
以上就是本文关于python中使用%与.format格式化文本方法解析的全部内容,希望对大家有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10