京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python中使用%与.format格式化文本方法解析
初学python,看来零零碎碎的格式化文本的方法,总结一下python中格式化文本的方法。使用不当的地欢迎指出谢谢。
1、首先看使用%格式化文本
常见的占位符:
常见的占位符有:
%d 整数
%f 浮点数
%s 字符串
%x 十六进制整数
使用方法:
>>> 'Hello, %s' % 'world'
'Hello, world'
>>> 'Hi, %s, you have $%d.' % ('Michael', 1000000)
'Hi, Michael, you have $1000000.'
使用的时候不知道写什么的地方直接使用 %s 进行代替,语句的末尾加上 %() 括号里面直接填写内容即可(字符串加上引号,中间用“,”分割),如果只有一个%?,括号可以省略。
高级一点的用法:
格式化整数指定是否补零:
首先看代码:
?
>>> '%d-%d' % (3, 23)
'3-23'
>>> '%2d-%2d' % (3, 23)
' 3-23'
>>> '%3d-%3d' % (3, 23)
' 3- 23'
>>> '%4d-%4d' % (3, 23)
' 3- 23'
>>> '%01d-%01d' % (3, 23)
'3-23'
>>> '%02d-%02d' % (3, 23)
'03-23'
>>> '%03d-%03d' % (3, 23)
'003-023'
>>> '%04d-%04d' % (3, 23)
'0003-0023'
>>>
可以看得出来,d前面的数字用来指定占位符,表示被格式化的数值占用的位置数量(字节还是什么不知道这样的表述是否正确),指定之后比如%3d,代表这个整数要占用3个位置,前面如果有0代表占用的地方使用0补齐,没有就使用空格补齐。指定的空间位置小于实际的数字大小,以实际占用的位置大小为准。
指定小数的位数:
>>> '%.f' % 3.1415926'3'
>>> '%.1f' % 3.1415926'3.1'
>>> '%.2f' % 3.1415926'3.14'
>>> '%.3f' % 3.1415926'3.142'
>>>
可以看出.后面的数字用来表示保留的小数点的位数,".1"代表保留小数点后面一位小数。
如果不确定应该用什么,%s永远起作用,它会把任何数据类型转换为字符串:
>>> 'Age: %s. Gender: %s' % (25, True)
'Age: 25. Gender: True'
有些时候,字符串里面的%是一个普通字符怎么办?这个时候就需要转义,用%%来表示一个%:
>>> 'growth rate: %d %%' % 7
'growth rate: 7 %'
尝试使用其他方法对%进行转义,但是好像没有用,有什么其他方法欢迎评论。
2、使用format 方法进行格式化
代码演示:
age = 25
name = 'Swaroop'
print('{0} is {1} years old'.format(name, age))
print('Why is {0} playing with that python?'.format(name))
位置使用{1}按照使用的顺序写好,后面格式使用 .format() 写好对应的参数即可。
输出结果:
Swaroop is 25 years old
Why is Swaroop playing with that python?
其实也可以使用第一种方法实现:
age = 25
name = 'Swaroop'
print('%s is %s years old'%(name, age))
print('Why is %s playing with that python?'%(name))
输出
Swaroop is 25 years old
Why is Swaroop playing with that python?
实现的结果都是一样的。
总结
以上就是本文关于python中使用%与.format格式化文本方法解析的全部内容,希望对大家有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22