京公网安备 11010802034615号
经营许可证编号:京B2-20210330
使用Python求解最大公约数的实现方法
这篇文章主要介绍了使用Python求解最大公约数的实现方法,包括用Python表示欧几里得算法和Stein算法的求解原理.
1. 欧几里德算法
欧几里德算法又称辗转相除法, 用于计算两个整数a, b的最大公约数。其计算原理依赖于下面的定理:
定理: gcd(a, b) = gcd(b, a mod b)
证明:
a可以表示成a = kb + r, 则r = a mod b
假设d是a, b的一个公约数, 则有 d|a, d|b, 而r = a - kb, 因此d|r。
因此,d是(b, a mod b)的公约数。
加上d是(b,a mod b)的公约数,则d|b, d|r, 但是a = kb + r,因此d也是(a, b)的公约数。
因此,(a, b) 和(a, a mod b)的公约数是一样的,其最大公约数也必然相等,得证。
欧几里德的Python语言描述为:
2. Stein算法
欧几里德算法是计算两个数最大公约数的传统算法,无论是理论,还是从效率上都是很好的。但是他有一个致命的缺陷,这个缺陷只有在很大的素数时才会显现出来。
考虑现在的硬件平台,一般整数最多也就是64位,
对于这样的整数,计算两个数值就的模很简单的。对于字长为32位的平台,计算两个不超过32位的整数的模,只需要一个指令周期,而计算64位以下的整数模,也不过几个周期而已。但是对于更大的素数,这样的计算过程就不得不由用户来设计,为了计算两个超过64位的整数的模,用户也许不得不采用类似于多位除法手算过程中的试商法,这个过程不但复杂,而且消耗了很多CPU时间。对于现代密码算法,要求计算128位以上的素数的情况比比皆是,设计这样的程序迫切希望能够抛弃除法和取模。
Stein算法由J.Stein 1961年提出,这个方法也是计算两个数的最大公约数。和欧几里德算法不同的是,Stein算法只有整数的移位和加减法,这对于程序设计者是一个福音。
为了说明Stein算法的正确性,首先必须注意到以下结论:
gcd(a, a) = a, 也就是一个数和他自己的公约数是其自身。
gcd(ka, kb) = k * gcd(a, b),也就是最大公约数运算和倍乘运算可以交换,特殊的,当k=2时,说明两个偶数的最大公约数比如能被2整除。
Stein算法的python实现如下:
def gcd_Stein(a, b):
if a < b:
a, b = b, a
if (0 == b):
return a
if a % 2 == 0 and b % 2 == 0:
return 2 * gcd_Stein(a/2, b/2)
if a % 2 == 0:
return gcd_Stein(a / 2, b)
if b % 2 == 0:
return gcd_Stein(a, b / 2)
return gcd_Stein((a + b) / 2, (a - b) / 2)
3. 一般求解实现
核心代码很简单:
def gcd(a, b):
if b == 0:return a
return gcd(b, a % b)
附上一个用Python实现求最大公约数同时判断是否是素数的一般方法:
程序如下:
#!/usr/bin/env python
def showMaxFactor(num):
count = num / 2
while count > 1:
if num % count == 0:
print 'largest factor of %d is %d' % (num, count)
break #break跳出时会跳出下面的else语句
count -= 1
else:
print num, "is prime"
for eachNum in range(10,21):
showMaxFactor(eachNum)
输出如下:
largest factor of 10 is 5
11 is prime
largest factor of 12 is 6
13 is prime
largest factor of 14 is 7
largest factor of 15 is 5
largest factor of 16 is 8
17 is prime
largest factor of 18 is 9
19 is prime
largest factor of 20 is 10
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20