京公网安备 11010802034615号
经营许可证编号:京B2-20210330
使用Python求解最大公约数的实现方法
这篇文章主要介绍了使用Python求解最大公约数的实现方法,包括用Python表示欧几里得算法和Stein算法的求解原理.
1. 欧几里德算法
欧几里德算法又称辗转相除法, 用于计算两个整数a, b的最大公约数。其计算原理依赖于下面的定理:
定理: gcd(a, b) = gcd(b, a mod b)
证明:
a可以表示成a = kb + r, 则r = a mod b
假设d是a, b的一个公约数, 则有 d|a, d|b, 而r = a - kb, 因此d|r。
因此,d是(b, a mod b)的公约数。
加上d是(b,a mod b)的公约数,则d|b, d|r, 但是a = kb + r,因此d也是(a, b)的公约数。
因此,(a, b) 和(a, a mod b)的公约数是一样的,其最大公约数也必然相等,得证。
欧几里德的Python语言描述为:
2. Stein算法
欧几里德算法是计算两个数最大公约数的传统算法,无论是理论,还是从效率上都是很好的。但是他有一个致命的缺陷,这个缺陷只有在很大的素数时才会显现出来。
考虑现在的硬件平台,一般整数最多也就是64位,
对于这样的整数,计算两个数值就的模很简单的。对于字长为32位的平台,计算两个不超过32位的整数的模,只需要一个指令周期,而计算64位以下的整数模,也不过几个周期而已。但是对于更大的素数,这样的计算过程就不得不由用户来设计,为了计算两个超过64位的整数的模,用户也许不得不采用类似于多位除法手算过程中的试商法,这个过程不但复杂,而且消耗了很多CPU时间。对于现代密码算法,要求计算128位以上的素数的情况比比皆是,设计这样的程序迫切希望能够抛弃除法和取模。
Stein算法由J.Stein 1961年提出,这个方法也是计算两个数的最大公约数。和欧几里德算法不同的是,Stein算法只有整数的移位和加减法,这对于程序设计者是一个福音。
为了说明Stein算法的正确性,首先必须注意到以下结论:
gcd(a, a) = a, 也就是一个数和他自己的公约数是其自身。
gcd(ka, kb) = k * gcd(a, b),也就是最大公约数运算和倍乘运算可以交换,特殊的,当k=2时,说明两个偶数的最大公约数比如能被2整除。
Stein算法的python实现如下:
def gcd_Stein(a, b):
if a < b:
a, b = b, a
if (0 == b):
return a
if a % 2 == 0 and b % 2 == 0:
return 2 * gcd_Stein(a/2, b/2)
if a % 2 == 0:
return gcd_Stein(a / 2, b)
if b % 2 == 0:
return gcd_Stein(a, b / 2)
return gcd_Stein((a + b) / 2, (a - b) / 2)
3. 一般求解实现
核心代码很简单:
def gcd(a, b):
if b == 0:return a
return gcd(b, a % b)
附上一个用Python实现求最大公约数同时判断是否是素数的一般方法:
程序如下:
#!/usr/bin/env python
def showMaxFactor(num):
count = num / 2
while count > 1:
if num % count == 0:
print 'largest factor of %d is %d' % (num, count)
break #break跳出时会跳出下面的else语句
count -= 1
else:
print num, "is prime"
for eachNum in range(10,21):
showMaxFactor(eachNum)
输出如下:
largest factor of 10 is 5
11 is prime
largest factor of 12 is 6
13 is prime
largest factor of 14 is 7
largest factor of 15 is 5
largest factor of 16 is 8
17 is prime
largest factor of 18 is 9
19 is prime
largest factor of 20 is 10
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23