
大数据、物联网与超高密度计算的需求
大数据和物联网一直被誉为IT世界的下一场革命。除了网络连接设备以及客户行为分析之外,物联网和大数据正在用于解决越来越复杂的业务问题。企业采用物联网技术来管理构成其组织的网络连接、设备和应用程序。而自动化的工作流程,长期以来一直是制造行业的战略口号,如今正在被许多不同的组织所接受。
物联网和大数据显然是密切相关的:根据定义,数十亿台与互联网相关的设备将会产生大量的数据。物联网设备生成大量数据,人们需要采用大数据技术获取收集的所有数据并将其转化为有用的、可操作的信息,有时甚至采用的是自动化收集。另一方面,物联网提供了丰富的数据,通过计算处理和智能化,可以为企业使用提供宝贵的见解。
但对于这些创新技术来说,未来的应用成本似乎很昂贵。但对于许多人来说,这将会受到复杂性和容量问题的限制。随着数据量的增长,企业的服务器需要进行高效处理,这将变得过于复杂,并且时间紧迫,如果不能得到及时有效的处理,那么物联网和大数据的好处将会无法体现。
大容量的挑战
物联网和大数据为任何组织的安全性、服务器、存储和网络带来了巨大的压力,整个技术供应链都感受到了这些需求的影响。IT部门需要部署更具前瞻性的容量管理功能,以便更好地满足与物联网连接相关的业务优先级。而大数据处理需要大量的存储和计算资源。
所有这些意味着,数据中心将牢牢占据业务的核心。除了能够存储物联网生成的数据之外,能够快速地访问和解释这些数据,并转化有意义的可操作的信息是非常重要的,并且将给那些表现出色的组织带来巨大的竞争优势。
正确实施数据中心战略意味着企业拥有一个智能且可扩展的资产,能够实现增长。但是如果没有正确实施,这将成为企业创新的一个基本约束。因此,企业必须确保他们的数据中心战略已经准备就绪,并且能够应对下一代计算和性能需求,以保持竞争力和成本效益,同时也为指数级增长做好准备。
高性能计算
当然,IT行业致力于设计创新的工具和技术,以跟上物联网和大数据等技术趋势的快速发展,技术供应商已经为容量和复杂性问题提供了多种解决方案。
高性能计算(HPC)一度被视为教育和制药等垂直领域的解决方案,现在正被视为解决物联网和大数据带来的挑战的一种有效方式。高性能计算(HPC)近年来面临着巨大的挑战,例如需要处理高速、多品种、大批量大数据的计算性能的可扩展性,以及大规模数据集的深度学习。但其好处也越来越明显,将不只是在几个关键的垂直领域得到应用。数据中心管理人员现在正在考虑采用高密度的创新战略,以最大限度地提高生产力和效率,并提高数据中心的可用功率密度和物理足迹计算能力。
事实上,高密度计算(HDC)也解决了一个重要的成本因素,因为复杂的技术发展意味着数据存储和电力需求的螺旋式增长,这是一个至关重要的问题。高密度计算(HDC)为客户提供整合IT基础设施的能力,从而减少数据中心的占地面积,降低总体成本。部署的密度越高,客户的效率越高。
寻找合适的供应商
人们知道,为了满足物联网和大数据需求的处理要求以及缓解成本,组织正在加速对高性能计算(HPC)的需求。但是许多组织可能会发现公共云并不总是能够提供正确的平台。然而,其答案也不是企业设计和建造一个昂贵的内部部署数据中心,而这样的数据中心将快速老化并变得效率低下,企业应该寻求获得那些了解高性能计算(HPC)专业需求的托管服务提供商的服务。
数据中心可以支持高性能计算,这已成为托管服务提供商的新战场。高密度能力对于企业决定使用哪个第三方数据中心至关重要。组织需要密切关注这些能力。如果高密度从一开始就进行相关设计,那么就有能力支持下一代企业IT基础设施,以实现高性能计算,优化所需的数据中心空间和整体相关成本。这意味着,无论现有的数据中心是否采取措施提供高密度,他们都在追赶下一代已具备此功能的智能数据中心。
而那些正在努力升级传统数据中心以实现超高密度的供应商面临着更加艰巨的任务。虽然高密度的概念很简单,但它涉及的不仅仅是为建筑物增加更多的电力。在数据中心能够支持这个要求之前,必须要有一个强大且适合用途的基础设施。高密度不仅要求每个机柜的功率增加,而且还需要提供下一代的冷却能力,这是极其难以改造的。先进的冷却技术是必不可少的,因为更多的能耗和更高效工作的服务器相当于产生更多的热量。
因此,做出正确的选择不仅涉及数据中心,还涉及到适合的高性能计算平台的选择,重要的是,在他们在签署合同之前,组织要询问供应商关于基础设施、冷却和能源消耗的那些棘手问题。
展望未来
总的来说,企业将面临一个严峻的战略选择层。许多行业因数字技术的应用而发生了根本性的变化,而数字中断意味着企业不能自满,他们需要抓住物联网和大数据提供的机会。例如游戏厂商Netflix或Instagram公司。
尽管许多行业正在把握采用物联网和大数据技术的这一重要机遇,但那些没有正确认识的企业将最终难以在各方面保持竞争力。其成功的关键在于确保数据中心能够满足技术创新对他们的严格要求。组织必须寻找合适的数据中心合作伙伴以帮助他们的业务取得成功,并采用像高性能计算(HPC)和高密度计算(HDC)这样的新技术来帮助满足这些需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18