京公网安备 11010802034615号
经营许可证编号:京B2-20210330
单向链表
单向链表也叫单链表,是链表中最简单的一种形式,它的每个节点包含两个域,一个信息域(元素域)和一个链接域。这个链接指向链表中的下一个节点,而最后一个节点的链接域则指向一个空值。
表元素域elem用来存放具体的数据。
链接域next用来存放下一个节点的位置(python中的标识)
变量p指向链表的头节点(首节点)的位置,从p出发能找到表中的任意节点。
节点实现
class Node(object):
"""单链表的结点"""
def __init__(self,item):
# item存放数据元素
self.item = item
# next是下一个节点的标识
self.next = None
单链表的操作
is_empty() 链表是否为空
length() 链表长度
travel() 遍历整个链表
add(item) 链表头部添加元素
append(item) 链表尾部添加元素
insert(pos, item) 指定位置添加元素
remove(item) 删除节点
search(item) 查找节点是否存在
单链表的实现
class Singlepnkpst(object):
"""单链表"""
def __init__(self):
self.__head = None
def is_empty(self):
"""判断链表是否为空"""
return self.__head == None
def length(self):
"""链表长度"""
# cur初始时指向头节点
cur = self.__head
count = 0
# 尾节点指向None,当未到达尾部时
while cur != None:
count += 1
# 将cur后移一个节点
cur = cur.next
return count
def travel(self):
"""遍历链表"""
cur = self.__head
while cur != None:
print(cur.item,end = ' ')
cur = cur.next
print("")
头部添加元素
def add(self, item):
"""头部添加元素"""
# 先创建一个保存item值的节点
node = Node(item)
# 将新节点的链接域next指向头节点,即_head指向的位置
node.next = self.__head
# 将链表的头_head指向新节点
self.__head = nod
尾部添加元素
def append(self, item):
"""尾部添加元素"""
node = Node(item)
# 先判断链表是否为空,若是空链表,则将_head指向新节点
if self.is_empty():
self.__head = node
# 若不为空,则找到尾部,将尾节点的next指向新节点
else:
cur = self.__head
while cur.next != None:
cur = cur.next
cur.next = node
指定位置添加元素
def insert(self, pos, item):
"""指定位置添加元素"""
# 若指定位置pos为第一个元素之前,则执行头部插入
if pos <= 0:
self.add(item)
# 若指定位置超过链表尾部,则执行尾部插入
epf pos > (self.length()-1):
self.append(item)
# 找到指定位置
else:
node = Node(item)
count = 0
# pre用来指向指定位置pos的前一个位置pos-1,初始从头节点开始移动到指定位置
pre = self.__head
while count < (pos-1):
count += 1
pre = pre.next
# 先将新节点node的next指向插入位置的节点
node.next = pre.next
# 将插入位置的前一个节点的next指向新节点
pre.next = node
删除节点
def remove(self,item):
"""删除节点"""
cur = self.__head
pre = None
while cur != None:
# 找到了指定元素
if cur.item == item:
# 如果第一个就是删除的节点
if not pre:
# 将头指针指向头节点的后一个节点
self.__head = cur.next
else:
# 将删除位置前一个节点的next指向删除位置的后一个节点
pre.next = cur.next
break
else:
# 继续按链表后移节点
pre = cur
cur = cur.next
查找节点是否存在
def search(self,item):
"""链表查找节点是否存在,并返回True或者False"""
cur = self.__head
while cur != None:
if cur.item == item:
return True
cur = cur.next
return False
以上这篇python数据结构链表之单向链表(实例讲解)就是小编分享给大家的全部内容了
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22