京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言简单操作,数值与向量
1 向量与赋值
R对命名了的数据结构进行操作。最简单的数据结构是数字向量;如,
> x <- c(10.4, 5.6, 3.1, 6.4, 21.7) c()是创建函数,赋值运算符是'<-',与函数assign()等价
> assign("x", c(10.4, 5.6, 3.1, 6.4, 21.7)) 也可以写成:
> c(10.4, 5.6, 3.1, 6.4, 21.7) -> x
如果一个表达式被当作一个完整的命令,它的值将被打印到终端但不被储存。
单独输入x则会将值打印出来。也可以打印倒数:
> 1/x
> y <- c(x, 0, x) 也可以将向量作为元素。
2 向量运算
操作是按照向量中的元素一个一个进行的。同一个表达式中的向量并不需要具有相同的长度。如果它们的长度不同,表达式的结果是一个与表达式中最长向量有相同长度的向量。表达式中较短的向量会根据它的长度被重复使用若干次(不一定是整数次),直到与长度最长的向量相匹配。而常数很明显的将被不断重复。如,
> v <- 2*x + y + 1
常用运算有:
+,-,*,/,^(次方);
log, exp, sin, cos, tan,sqrt等;
max和min的作用是选出所给向量中最大的或最小的元素;
range函数的值是一个长度为2的向量,即c(min(x),max(x))
length(x)返回了向量x中元素的个数,也就是x的长度。
sum(x)给出了x中所有元素的总和;
prod(x)给出x中所有元素的乘积;
mean(x)和var(x),分别计算样本均值和样本方差,这两个函数分别相当于sum(x)/length(x),sum((x-mean(x)) \^2)/(length(x) -1)。如果var()的参数是一个n*p的矩阵,那么函数的值是一个p*p的样本协方差矩阵,认为每行是一个p变量的样本向量。
sort(x)返回一个与x具有相同长度的向量,其中的元素按招升序排列。还有其他更灵活的排序功能(参见order()和sort.list())。
pmax和pmin将返回一个与最长的向量长度相等的向量,向量中的元素由参数中所有向量在相应位置的最大值(最小值)组成;
如果要使用复数,需要直接给出一个复数部分。因此sqrt(-17)将会返回NaN(无效数值)和一个警告,而sqrt(-17+0i)将按照复数进行运算。
3 生成序列
最简单的方法是用冒号‘:’,冒号具有最高运算优先级。例如1:30就是向量c(1,2,. . .,29,30)。30:1构造一个递减序列。
利用seq()函数构造序列:有五个参数,from, to, by, length, along
from, to可以不写参数名,seq(2,10)就相当于2:10。
by指定步长,默认为1,如seq(-5, 5, by=.2)即为c(-5.0, -4.8, -4.6, ..., 4.6, 4.8, 5.0)
length指定序列长度,如seq(length=51, from=-5, by=.2),等同于seq(-5, 5, by=.2)
along=vector只能单独使用,产生一个“1:length(vector)”序列。类似的函数是rep(),这个函数可以用多种复杂的方法来
复制一个对象。最简单的形式是> s5 <- rep(x, times=5)
4 逻辑向量
TRUE, FALSE, 和NA(not available), 前两个可以简写为T和F,但T/F并不是系统保留字,可以被用户覆盖,所以最好还是不要简写。
逻辑向量是由条件给出的,如下列语句令temp成为一个与x长度相同,相应位置根据是否与条件相符而由TRUE或FALSE组成的向量:
> temp <- x > 13
逻辑操作符包括<, <=, >, >=,完全相等==和不等于!=,与或非分别为&, |, !。
在普通运算中,FALSE当做0而TRUE当做1。
5 缺失值
NA(not available): 一般来讲一个NA的任何操作都将返回NA。
is.na(x)返回一个与x等长的逻辑向量,并且由相应位置的元素是否是NA来决定这个逻辑向量相应位置的元素是TRUE还是FALSE。
x==NA是一个与x具有相同长度而其所有元素都是NA的向量。
NaN(Not a Number): 由数值运算产生,如0/0, Inf-Inf.
is.na(x)对于NA和NaN值都返回TRUE,
is.nan(x)只对NaN值返回TRUE。
6 字符向量
字符串在输入时可以使用单引号(')或双以号("); 在打印时用双引号(有时不用引号)。
R使用与C语言风格基本相同的转义符, 所以输入\\打印的也是\\, 输入\" 打印引号", \n: 换行, \t: tab, \b: 回格。
字符向量可以通过函数c()连接;
paste()可以接受任意个参数,并从它们中逐个取出字符并连成字符串,形成的字符串的个数与参数中最长字符串的长度相同。如果参数中包含数字的话,数字将被强制转化为字符串。在默认情况下,参数中的各字符串是被一个空格分隔的,不过通过参数sep=string
用户可以把它更改为其他字符串,包括空字符串。例如:
> labs <- paste(c("X","Y"), 1:10, sep="") 使变量labs成为字符变量c("X1", "Y2", "X3", "Y4", "X5", "Y6", "X7", "Y8", "X9", "Y10")
7 index vector---数据集子集的选择与修改
任何结果为一个向量的表达式都可以通过追加索引向量(index vector)来选择其中的子集。
1 逻辑的向量。
> y <- x[!is.na(x)] 表示将向量x中的非NA元素赋给y;
> (x+1)[(!is.na(x)) & x>0] -> z 表示创建一个对象z,其中的元素由向量x+1中与x中的非缺失值和正数对应的向量组成。
2. 正整数的向量
> x[6] 是x的第六个元素
> x[1:10] 选取了x的前10个元素(假设x的长度不小于10)。
> c("x","y")[rep(c(1,2,2,1), times=4)] 产生了一个字符向量,长度为16,由"x", "y", "y", "x"重复4次而组成。
3. 负整数的向量
> y <- x[-(1:5)] 表示向量y取向量x前5个元素以外的元素。
4. 字符串的向量
只存在于拥有names属性并由它来区分向量中元素的向量。这种情况下一个由名称组成的子向量起到了和正整数的索引向量相同的效果。
> fruit <- c(5, 10, 1, 20)
> names(fruit) <- c("orange", "banana", "apple", "peach")
> lunch <- fruit[c("apple","orange")]
子集的修改
> x[is.na(x)] <- 0 表示将向量x中所以NA元素用0来代替
> y[y < 0] <- -y[y < 0] 表示将向量(-y)中 与向量y的负元素对应位置的元素 赋值给 向量y中 与向量y负元素对应的元素。作用相当于:
> y <- abs(y)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22