京公网安备 11010802034615号
经营许可证编号:京B2-20210330
对商业智能(BI)投资回报率的测量
商业智能(BI)的品质与商业智能(BI)投资回报率(ROI)是不同的概念。一个商业智能(BI)项目或系统是设计来提供特定的信息。在大多数情况下,商业智能(BI)的品质是对商业智能项目的结果的基于IT方面的评估。商业智能(BI)投资回报率的测量包括物流基础:获得正确的信息在需要的时候传递给正确的人,并且符合为商业智能(BI)系统规定的商业目标。因此,商业智能(BI)的质量取决于以下几方面评估:
数据的正确性和完整性。
将数据转换成可用的信息。
信息交付的速度和格式。
信息的能否很好地满足最初设计的设计标准和业务需求。(用户对信息满意吗)?
另一方面,商业智能(BI)的投资回报率(ROI)是一个商业管理的问题。对企业来说,投资回报率(ROI)的评估或许更重要。然而,没有行业标准来测量商业智能(BI)所带来的好处。但是将他们列于“无形”已不再是一个可接受的答案。
我们能为商业智能(BI)计算投资回报率(ROI)吗?
要将商业智能(BI)置于有形的价值只会让人沮丧。在大多数情况下,企业已经不得不接受一种直觉和信念,认为商业智能(BI)是值得投入的,而不在这方面投资所造成的风险太大。如果你的竞争对手正将他们所有的数据转换成一些了不起的信息让他们获得优势,该如何?
我们可以从商业智能(BI)拥有者的总成本开始,总成本的计算具有某种程度的合理的准确性。决定什么应该被包含在这些成本中则是各不相同。然而,可以有一些标准和相对明确的决策来进行项目与项目间的比较和综合资源的估算。这些成本包括那些为数据仓库、信息展现、数据采集与管理和所有相关的基础设施、软件、工具和支持资源的投入。
此外,商业智能(BI)项目的开发、管理和交付成本,包括基础设施,都是成本计算中的一部分。在当前的成本计算中最有可能不被考虑到的是,那些作为商业智能(BI)产品的关键组成部分的有关人员,包括对这些人的培训和经验积累。决定什么应该被包含在商业智能(BI)的投资成本中可能存在一定的主观性,但是所有这些成本都可以被计算,或者至少被确认,分配和估算。
更难的是对获取的利益给出一个价值。我们如何利用这些信息来作出更好的业务决定?有一些测量标准,诸如对之前和之后的运作效率进行比较,这有些最简单的商业智能(BI)系统的相对标准。然而,对回报进行有形价值的预测和计算,特别是在更复杂的商业智能(BI)投资方面,不是简单的事。这个过程可能会让你感到沮丧,经常让你感到似乎是不可能的,也许根本毫无意义。但是如果我们可以评估这些好处,并提供一些有形的评级,我们就可以为企业提供一个商业智能(BI)投资的管理决策制定的基础。
可以这么想:
好的商业智能(BI)是正确的信息,正确的时间,正确的格式,和正确的人以及/或系统资源的融合。如果我们希望改善商业智能(BI),我们问这样一些问题:
当人们(或智能系统)做决定时,他们在需要的时候有需要的信息吗?
那些人在有益于企业的工作中,有最佳使用这些信息该有的专业知识、培训及态度吗?
因为这些信息的承现,他们的工作完成的是不是更好了?
那些信息改变了他们多少?
对商业智能(BI)的效益审计
评估商业智能(BI)的好处的最有效方法问相关人士。我们可以用问卷调查,并给予定期调查。这是一个简单又直接的方法。然而,这样的一个效益审计也必须对商业智能(BI)项目、商业智能(BI)系统(特定的BI群组)和整个企业对商业智能(BI)投资的相对效益能严谨和结构化地给出有形的、实际的评估。
使用正规的,结构完善的度量标准和模式,我们可以为企业把专业人士的观点转化成值得信赖的商业智能(BI)的效益评估。所谓专业人士是那些使用信息的人和对使用信息的人的表现进行日常评估的管理者。我们也可能希望加进竞争对手的分析和来自客户、营销团队和顾问公司的意见。如此,我们可以把专家的评价转化成对管理来说可行的、有意义的评价工具。
这样一个效益审计中可以得出一些价值特征。我们可以:
对商业智能(BI)的资源承诺做出更好的决策。商业智能(BI)项目的相对价值在项目开发之前就可以确定。机会成本和风险可以预先评估。
在战略和战术层面改善管理规划。有关法律和法规的要求可以更容易进行评估和计划,并可以降低相关的风险。
激励更好的决策制定。
通过对结果的更好理解提升商业智能(BI)和商业智能(BI)项目的质量。我们将能够把结果反馈到商业智能(BI)设计、开发和使用流程中。
通过对商业智能(BI)的整合和信息交流的意识的增强,企业的文化得以发展和提高。
为企业员工提供激励和支持。进行这样的审计将传递一种信息,表明企业关心,尊重他们的意见,并且欢迎新的创意。
通过重视和相关的教育,培训和意识培养,鼓励创造性和广泛地使用商业智能(BI)
商业智能(BI)的效益审计过程, 提出的问题及其方试都将为那些制定和实施审计者以及所有参与者提供更多的知识、理解和训练。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16