
数据中心经济学的重新定义
从我们查阅电子邮件或下载音乐及应用程序;到使用政府机构的在线服务或从云中访问商业应用程序,数据中心始终在我们与信息技术互动的过程中扮演着相当重要的驱动角色。
在过去的几年里,数据中心行业经历了迅速的发展,以便与不断变化的用户期望保持一致。在企业内部,现代数据中心的管理其实扮演的是一种不断满足新的商业机会对快速响应的需求和管理现有的基础设施成本之间的持续平衡的角色。所以,选择一款合适的基础设施平台,对于成功的IT企业同时满足上述两方面的需求而言是至关重要的。
云计算也是席卷数据中心行业的一个巨大的潮流。很多企业都转向云式的数据中心部署,以便能够快速的部署新的服务,并巩固和加强现有的基础设施投资,以实现最佳的投资回报。专为云计算基础设施设计的平台较之传统的独立服务器、网络和存储,能够加速帮助企业实现业绩。
实施成功的云基础设施需要更加先进的数据中心技术,如更快的广域网络、功能强大的服务器、巨大的存储容量和普遍部署的高性能虚拟化。其要求实现一个端到端的技术愿景。
成千上万的客户均转向选择那些可以提供一个集中的企业数据中心组合设计的供应商。这种组合设计围绕着硬件和软件设计工作相结合的原则。这样,这些客户可以期待实现更加优化的企业堆栈,进而帮助企业降低风险、提供领先的性能,并简化部署和管理。在当今世界上,硬件与软件的密切兼容合作能够为该行业带来无与伦比的性能表现。
降低风险并保护投资
一些企业已经使用创新技术,在一定程度上较之同行业中的其他企业享有了无与伦比的投资保护了。今天,有超过50000家的企业和机构运行着超过11000款经过认证的应用技术。将他们现有的基础设施转移到最新的操作系统和硬件平台的过程已然通过二进制兼容性和灵活的虚拟化技术相结合的方法而大大简化了。
通过整合降低成本
虚拟化和云计算已经成为一种增强企业灵活性并支撑日益增长的业务需求的手段,对于新的IT服务来说显得越来越重要。许多企业已经部署基于x86服务器虚拟化的IT基础设施,以充分利用低成本和开放的体系结构的优势,使得他们可以方便自如的选择供应商的软件组件,如操作系统、虚拟化软件、管理工具。
虽然许多企业已经进行了一定程度的整合和虚拟化,但其实他们往往还可以通过扩大到更多的IT基础设施,以潜在的受益。整合和虚拟化提供一系列的优点,同时还有助于企业实现云计算所带来的额外的节约成本和灵活性的改进。
从台式机到数据中心虚拟化的投资回报率的提升
单靠整合所提供的虚拟化,就可以带来成本和运营效益。而通过使整个企业共享IT资源,虚拟化可以大大提高利用水平,显着提高投资回报率。
虚拟化是数据中心用于优化资源的关键技术。随着IT需求得持续发展,虚拟化将不再被视为一个孤立的技术来解决一个问题。许多公司已经开始利用服务器虚拟化、整合系统和减少资本支出(CAPEX)以实现优化。企业IT工作人员现在的任务是提供按需服务,数据中心虚拟化的需求已经远远超越了简单的整合和减少资本支出。
大规模整合的性能、可扩展性和灵活性
为了能够有效地整合,新的系统必须具有相关的性能、容量、安全性和可扩展性,以达到预期的性能水平,支持目标应用程序,甚至满足应用程序随着时间的推移的改变。
利用私有云就绪平台简化IT
企业关键任务的云计算必须结合敏捷性、灵活性和安全性的规模和性能,例如OracleSolaris就满足最苛刻的企业云所需的所有属性。内置虚拟化,易于部署的应用程序,满足工作负载移动性的基本要求。更重要的是,实现对这些功能的控制,必须利用大型的计算和存储资源池。达到相关的合规性要求,便于监测和报告,同样是必要的。
随着软件和硬件不断的经过兼容性设计和测试,整个系统管理得到了大大简化。增强了性能和可用性,同时降低了成本和部署时间。这种独特的能力为供应商们带来了一个额外的优势,他们可以同时对自己的软件和硬件产品进行设计、测试、包装、认证、部署和升级。
对于一些企业来说,推进到下一代数据中心将涉及到需要将业务内容从传统的应用程序和平台中转移到更符合成本效益的IT环境。我们的目标是通过将他们转化为现代语言、数据库和服务来保留现有的应用程序资产。
通过将您企业的数据中心的目标设定为高可用性,并减少列复杂性,并降低您企业的整体成本,您的企业的数据中心将被改造成一个能够跟踪处理当下的挑战,并满足企业业务增长需求,充分利用优势机会的数据中心。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07