京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据中心经济学的重新定义
从我们查阅电子邮件或下载音乐及应用程序;到使用政府机构的在线服务或从云中访问商业应用程序,数据中心始终在我们与信息技术互动的过程中扮演着相当重要的驱动角色。
在过去的几年里,数据中心行业经历了迅速的发展,以便与不断变化的用户期望保持一致。在企业内部,现代数据中心的管理其实扮演的是一种不断满足新的商业机会对快速响应的需求和管理现有的基础设施成本之间的持续平衡的角色。所以,选择一款合适的基础设施平台,对于成功的IT企业同时满足上述两方面的需求而言是至关重要的。
云计算也是席卷数据中心行业的一个巨大的潮流。很多企业都转向云式的数据中心部署,以便能够快速的部署新的服务,并巩固和加强现有的基础设施投资,以实现最佳的投资回报。专为云计算基础设施设计的平台较之传统的独立服务器、网络和存储,能够加速帮助企业实现业绩。
实施成功的云基础设施需要更加先进的数据中心技术,如更快的广域网络、功能强大的服务器、巨大的存储容量和普遍部署的高性能虚拟化。其要求实现一个端到端的技术愿景。
成千上万的客户均转向选择那些可以提供一个集中的企业数据中心组合设计的供应商。这种组合设计围绕着硬件和软件设计工作相结合的原则。这样,这些客户可以期待实现更加优化的企业堆栈,进而帮助企业降低风险、提供领先的性能,并简化部署和管理。在当今世界上,硬件与软件的密切兼容合作能够为该行业带来无与伦比的性能表现。
降低风险并保护投资
一些企业已经使用创新技术,在一定程度上较之同行业中的其他企业享有了无与伦比的投资保护了。今天,有超过50000家的企业和机构运行着超过11000款经过认证的应用技术。将他们现有的基础设施转移到最新的操作系统和硬件平台的过程已然通过二进制兼容性和灵活的虚拟化技术相结合的方法而大大简化了。
通过整合降低成本
虚拟化和云计算已经成为一种增强企业灵活性并支撑日益增长的业务需求的手段,对于新的IT服务来说显得越来越重要。许多企业已经部署基于x86服务器虚拟化的IT基础设施,以充分利用低成本和开放的体系结构的优势,使得他们可以方便自如的选择供应商的软件组件,如操作系统、虚拟化软件、管理工具。
虽然许多企业已经进行了一定程度的整合和虚拟化,但其实他们往往还可以通过扩大到更多的IT基础设施,以潜在的受益。整合和虚拟化提供一系列的优点,同时还有助于企业实现云计算所带来的额外的节约成本和灵活性的改进。
从台式机到数据中心虚拟化的投资回报率的提升
单靠整合所提供的虚拟化,就可以带来成本和运营效益。而通过使整个企业共享IT资源,虚拟化可以大大提高利用水平,显着提高投资回报率。
虚拟化是数据中心用于优化资源的关键技术。随着IT需求得持续发展,虚拟化将不再被视为一个孤立的技术来解决一个问题。许多公司已经开始利用服务器虚拟化、整合系统和减少资本支出(CAPEX)以实现优化。企业IT工作人员现在的任务是提供按需服务,数据中心虚拟化的需求已经远远超越了简单的整合和减少资本支出。
大规模整合的性能、可扩展性和灵活性
为了能够有效地整合,新的系统必须具有相关的性能、容量、安全性和可扩展性,以达到预期的性能水平,支持目标应用程序,甚至满足应用程序随着时间的推移的改变。
利用私有云就绪平台简化IT
企业关键任务的云计算必须结合敏捷性、灵活性和安全性的规模和性能,例如OracleSolaris就满足最苛刻的企业云所需的所有属性。内置虚拟化,易于部署的应用程序,满足工作负载移动性的基本要求。更重要的是,实现对这些功能的控制,必须利用大型的计算和存储资源池。达到相关的合规性要求,便于监测和报告,同样是必要的。
随着软件和硬件不断的经过兼容性设计和测试,整个系统管理得到了大大简化。增强了性能和可用性,同时降低了成本和部署时间。这种独特的能力为供应商们带来了一个额外的优势,他们可以同时对自己的软件和硬件产品进行设计、测试、包装、认证、部署和升级。
对于一些企业来说,推进到下一代数据中心将涉及到需要将业务内容从传统的应用程序和平台中转移到更符合成本效益的IT环境。我们的目标是通过将他们转化为现代语言、数据库和服务来保留现有的应用程序资产。
通过将您企业的数据中心的目标设定为高可用性,并减少列复杂性,并降低您企业的整体成本,您的企业的数据中心将被改造成一个能够跟踪处理当下的挑战,并满足企业业务增长需求,充分利用优势机会的数据中心。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06