京公网安备 11010802034615号
经营许可证编号:京B2-20210330
批量数据采集过程中方差的计算
最近项目用需要判断开始数据是否稳定,即采集到的数据是否符合期望,我用方差来判断采集到的数据是否稳定。有两种判断方法:第一种是数据不断的进来,我累积的进行方差计算;第二钟是利用滑动窗口的思想,数据个数达到窗口大小时计算方差值,采用循环数组的模式来实现此功能。
第一种实现方法就是采用迭代式的思想进行方差计算。我实在网上看到一位大神的博客中有对此方法的描述,他用matlab代码进行了说明,,我用C语言实现了;下面附上代码:
[cpp] view plain copy
double GetVariance(uint64_t value)
{
static uint8_t cnt = 0;
static double Var = 0;
static double Esp = 0;
double TempValue = 0;
cnt = cnt + 1;
if(cnt == 1)
{
Var = 0;
Esp = value;
return Var;
}
TempValue = value - Esp;
Esp = (value + Esp*(cnt - 1))/cnt;
Var = Var + TempValue*(value - Esp);
return (Var/cnt);
}
这样在程序中不断调用该函数即可迭代式的计算出方差,而不需要知道数据的个数。
第二种方法是采用滑动窗口的思想,这里需要说明一下,我做的时候有两种情况,一种是窗口不动,数据不断前移,FIFO,这种实现起来最简单;还有一种情况是窗口向前移动,这种实现起来就比较复杂了,我用单步调试好多次,才搞清楚之间的区别。
(1)窗口不动,数据前移:
[cpp] view plain copy
double Function(uint16_t value)
{
static uint8_t cnt=0;
static uint8_t len=7;
static uint16_t sample[7]={0};
uint8_t i=0;
double var;
if(cnt < len)
{
sample[cnt++] = value;
return 0;
}
else
{
for(;i+1<cnt;i++)
{
sample[i]=sample[i+1];
}
sample[i]=value;
var=Variance(sample,7);
}
}
其中 Variance()是我写的计算方差函数,这样就实现了滑动计算数据方差值。
(2)窗口前移,这种实现数据的滑动,设定好窗口大小后,按照FIFO原则,数据不断进入出去,但是这种实现数据滑动后对计算方差增加了难度,这里只说出如何实现窗口向前滑动的代码:
[cpp] view plain copy
void Function(uint16_t value)
{
static uint8_t cnt=0;
static uint8_t len=7;
static uint8_t index=0;
static int order[7]={0};
static int sample[7]={0};
uint8_t i=0;
sample[index] = value;
if(cnt < len)
{
cnt++;
}
else
{
for(i=0;i<cnt;i++)
{
if(order[i] == index)
break;
}
for(;i+1<cnt;i++)
{
order[i]=order[i+1];
}
}
order[cnt-1] = index;
index=(1+index)%len;
}
最后把计算方差的函数Varanice()代码列出来:
[cpp] view plain copy
double Variance(uint16_t data[], uint8_t n)
{
double mean = 0, divisor;
uint16_t sum = 0,Varian = 0;
uint8_t i;
for(i=0;i<n;i++)
{
sum = sum + data[i];
}
mean = sum/n;
for(i=0;i<n;i++)
{
Varian = Varian + pow(data[i]-mean,2);
}
/*程序中divisor是自由度,20是小样本判断的一个标准。如果是小样本的话,约束较大,
自由度就要减一;如果是大样本的话,自由度为样本个数。*/
if(n<20)
{
divisor = n-1;
}
else
{
divisor = n;
}
return (Varian/divisor);
}
以上代码如有错误还望指正,共同进步
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21