京公网安备 11010802034615号
经营许可证编号:京B2-20210330
别让“杀熟”杀死大数据
在本质上,大数据“杀熟”与传统经济的“杀熟”并无区别,体现的是一种滞后的商业文明,反映的是一种落后的商业伦理。
最近,有网友自述了被大数据“杀熟”的经历。据了解,他经常通过某旅行服务网站订某个特定酒店的房间,长年价格在380元到400元左右。偶然一次,通过前台了解到,淡季的价格在300元上下。他用朋友的账号查询后发现,果然是300元;但用自己的账号去查,还是380元
对于互联网和大数据,人们有着一种天然好感,想不到竟然存在这样的“杀熟”现象。从网友反馈来看,这种情况十分普遍。比如,“我和同学打车,我们的路线和车型差不多,我要比他们贵五六块”“选好机票后取消,再选那个机票,价格立马上涨,甚至翻倍”……正如歌中所唱,最懂你的人伤你最深。
大数据本身没有罪恶。然而,大数据的出现与成长一直伴随着各种怀疑和忧戚,事实也证明这一切并非杞人忧天。“杀熟”是新表现,但就“杀熟”本身来说,却是老问题。在本质上,大数据“杀熟”与传统经济的“杀熟”并无区别,体现的是一种滞后的商业文明,反映的是一种落后的商业伦理。君子爱财,取之有道。不过,在有些人眼中,在爱财取财这条路上,只恨无道,不分什么大道小道、正道邪道。
大数据“杀熟”,“杀”的是消费者,又何尝不是整个行业?人们对以互联网为代表的新经济,有着一种初恋的感觉,亦如对待自己的孩子一样,哪怕有一些问题,也以瑕不掩瑜为由选择性忽视了。这种舆论好感,是新经济发展的最大助力。当我们感慨没有包容审慎就没有微信时,是整个互联网经济的常态。现在,发生大数据“杀熟”现象,看似挣了一点小钱,但长此以往,只会透支舆论信任,最终让整个行业的未来遭受打击。
有人可能想问,现在实体经济领域已经很少出现“杀熟”了,而大数据“杀熟”是不是说明现在新经济领域的商业伦理尤其不堪?问题确实需要重视,但也不能说新经济在商业伦理上就尤其不堪。“杀熟”从传统经济转向新经济,更多的是因为传统经济领域已经逐渐形成了一套相对有效的约束体系,越来越不具备“杀熟”的空间。但新经济不同,由于大数据本身的特点具有相当的迷惑性,而在对平台的监管也有不足,这在事实上提供了“杀熟”空间。
面对大数据“杀熟”,理性的态度不是“把孩子和洗澡水一起倒掉”。大数据技术普及是大势所趋,有利于实现与满足美好生活需要。当下更重要的,还是针对问题拿出有力有效的办法,防止大数据伤人吃人。解决这个问题,很难毕其功于一役,监管部门必须从制度上重视,真正写好抓常抓细抓长的文章;消费者也要擦亮眼睛,学会“有态度的消费”;新经济行业更应该增强行业自律,维护行业形象。值得一提的是,别因大数据“杀熟”杀死大数据,舆论要有理性态度,大数据本身更要有清醒态度——行业发展离不开舆论支持,损人到最后必然损己。
大数据“杀熟”不过是老问题的新表现,确实需要引起重视,但不必过分紧张,不要因此对大数据失去信心。商业伦理的塑造,商业秩序的形成,从来都不容易。可以预言的是,在新经济发展中,在大数据应用中,还会出现一些新问题。真正的高手从来都不惧怕问题,而是见缝插针地点破问题,见招拆招地解决问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22