
R语言-统计学 描述性统计
描述定量数据的数值方法:中心趋势度量 变异的度量 相对位置的度量。
1.中心趋势度量 : 算数平均 中位数 众数
demo <- mtcars[1:6,] # 调用R自带函数集,并去前6行
toushi <- aggregate(mtcars[,5:6] ,by = list(cyl = mtcars$cyl),sum) # 数据透视表求和
toushi <- as.matrix(toushi) # 将结果的数据框转化成矩阵
#(toushi <- apply(toushi,c(1,2),sum))
(rowSums(toushi)) # 行求和
(colSums(toushi)) # 列求和
toushi <- rbind(toushi,rowSums(toushi)) #将行求和结果并入最后一行
toushi <- cbind(toushi,colSums(toushi)) #将列求和结果并入最后一列
1.2 中位数和众数
对于偏度极大的数据集,中位数能更好的描述数据分布的中心。
很少用众数作为数据数据趋势的度量,只有当对y出现的相对频率感兴趣时,才会考虑到众数。
R实现中位数 :
median(x, na.rm = FALSE)
R中没有直接插找众数的命令
which.max(table(x))
2.变异的度量 : 极差 方差 标准差
2.1 .极差 = max()- min()
2.2 方差和标准差
对一个有n个测量值的有限总体来说,方差计算公式的分母为n。关于样本方差和总体方差分母的差异原因,可自行百度搜索。
R语言计算方差的函数: var(x,)
w<-c(75.0,64.0,47.4,66.9,62.2,62.2,58.7,63,5,66.6,64.0,57.0,69.0,56.9,50.0,72.0)
var(w)
# 附加指数点:标准差的两个有用法则:经验法则 和 切比雪夫法则,共同说明一个问题,对于任意大于1的正数k,至少有(1-1/k^2)的测试值落在平均值的k个标准值范围内。
3.变异的度量 : 百分位数 Z得分
3.1 .最常见的四分位数(一般从大到小)
quantile(x, probs = seq(0, 1, 0.25), na.rm = FALSE,names = TRUE, type = 7, ...)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29