
数据库一些重要的发展方向
数据库管理系统已经成为软件产业的重要组成部分,是信息化过程中最重要的技术基础之一。我国要振兴软件产业,就必须发展自己的数据库软件产业。这已经获得了广泛的共识,目前要解决的关键问题是如何能够“做得出、用得上、卖得掉”。我们认为,数据库软件的发展将仍然是关系系统内核基础上进行扩展的技术路线。
1、主流产品的发展现状
数据库管理系统经历了30多年的发展演变,已经取得了辉煌的成就,发展成了一门内容丰富的学科,形成了总量达数百亿美元的一个软件产业。根据Gartner Dataquest公司的调查,2000年国际数据库市场销售总额达88亿美元,比1999年增长10%。根据CCID的报告,2000年的中国数据库管理系统市场销售总额达24.8亿元,比1999年增长了41.7%,占软件市场总销售额的10.8%。可见,数据库已经发展成为一个规模巨大、增长迅速的市场。
目前,市场上具有代表性的数据库产品包括Oracle公司的Oracle、IBM公司的DB2以及微软的SQL Server等。在一定意义上,这些产品的特征反映了当前数据库产业界的最高水平和发展趋势。因此,分析这些主流产品的发展现状,是我们了解数据库技术发展的一个重要方面。
2、关系数据库技术仍然是主流
关系数据库技术出现在20世纪70年代、经过80年代的发展到90年代已经比较成熟,在90年代初期曾一度受到面向对象数据库的巨大挑战,但是市场最后还是选择了关系数据库。无论是Oracle公司的Oracle 9i、IBM公司的DB2、还是微软的SQL Server等都是关系型数据库。Gartner Dataquest的报告显示关系数据库管理系统(RDBMS)的市场份额最大,2000年RDBMS的市场份额占整个数据库市场的80%,这个比例比1999年增长了15%。这组数据充分说明RDBMS仍然是当今最为流行的数据库软件。当前,由于互联网应用的兴起,XML格式的数据的大量出现,学术界有一部分学者认为下一代数据库将是支持XML模型的新型的数据库。作者对此持否定态度,认为关系技术仍然是主流,无论是多媒体内容管理、XML数据支持、还是复杂对象支持等都将是在关系系统内核技术基础上的扩展。
3、产品形成系列化
一方面,Web和数据仓库等应用的兴起,数据的绝对量在以惊人的速度迅速膨胀;另一方面,移动和嵌入式应用快速增长。针对市场的不同需求,数据库正在朝系列化方向发展。例如IBM公司的DB2通用数据库产品包括了从高端的企业级并行数据库服务器,到移动端产品DB2
Everywhere的一整套系列。从支持平台看,今天的DB2已经不再是大型机上的专有产品,它支持目前主流的各种平台,包括Linux和Windows
NT。此外,它还有各种中间件产品,如DB2 Connect、DB2 Datajointer、DB2 Replication等,构成了一个庞大的数据库家族。
4、支持各种互联网应用
数据库管理系统是网络经济的重要基础设施之一。支持Internet(甚至于Mobile Internet)数据库应用已经成为数据库系统的重要方面。例如,Oracle公司从8版起全面支持互联网应用,是互联网数据库的代表。微软公司更是将SQLServer作为其整个。NET计划中的一个重要的成分。对于互联网应用,由于用户数量是无法事先预测的,这就要求数据库相比以前拥有能处理更大量的数据以及为更多的用户提供服务的能力,也就是要拥有良好的可伸缩性及高可用性。此外,互联网提供大量以XML格式数据为特征的半结构化数据,支持这种类型的数据的存储、共享、管理、检索等也是各数据库厂商的发展方向。
5、向智能化集成化方向扩展
数据库技术的广泛使用为企业和组织收集并积累了大量的数据。数据丰富知识贫乏的现实直接导致了联机分析处理(OLAP)、数据仓库(Data Warehousing)和数据挖掘(Data Mining)等技术的出现,促使数据库向智能化方向发展。同时企业应用越来越复杂,会涉及到应用服务器、Web服务器、其它数据库、旧系统中的应用以及第三方软件等,数据库产品与这些软件是否具有良好集成性往往关系到整个系统的性能。Oracle公司的Oracle 9i产品包括了OLAP、数据挖掘、ETL工具等一套完整的BI(商业智能)支持平台,中间件产品与其核心数据库具有紧密集成的特性,Oracle Application Server增加的一项关键功能是高速缓存特性,该特性可以将数据从数据库卸载到应用服务器,加速Web用户对数据的访问速度。IBM公司也把BI套件作为其数据库的一个重点来发展。微软认为商务智能将是其下一代主要的利润点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28