京公网安备 11010802034615号
经营许可证编号:京B2-20210330
详解Python核心对象类型字符串
Python的字符串的特点
Python与C语言,Java语言都不一样,没有单个字符,只有一个有一个字符的字符串。
字符串对象不可修改,属于不可变类型
字符串和列表,元组都从属于序列这个对象类别。所以序列支持的操作,字符串也支持。
用单引号和双引号表示都行,并列的字符串串常量会自动合并,不需要显式的用加号表示。
单双引号里面的特殊字符必须用转义序列表示,比如”,',\都需要在前面加个、,但是在三引号里面不需要转义。
Python的字符串的支持的基本操作
支持序列的操作,比如len(‘abc')取长度
Python不允许混合数字和字符串的加法,比如9+'3'不会转成字符串,这点和Java不一样。
分片通过偏移来指定分片的大小,[偏移A:偏移B:偏移C]从左到右偏移为正,从右到左偏移为负。偏移A省略表示最左端,偏移B省略表示最右端,如[1:]表示从索引为1到最右端。分片创建一个新的对象返回,所以用[:]可以实现拷贝。分片偏移C表示步进,从左端和右端的区间复制索引相差为步进的元素,组成新对象返回。
修改字符串会产生一个新的字符串对象,这时候可能会有疑问,这样不是效率很低吗?在JAVA中确实是这样,如果用+号来合并字符串就会产生一个新对象,所以在JAVA中一般用StringBuilder避免产生过多的对象,但是在Python中没被变量引用的对象会立即回收掉空间,新对象会重用回收的空间。所以效率并不会很低。
Python的字符串转换
数字与字符串之间的转换:通过内置函数int(‘42'),str(42),float(‘42')之类的来转换
字符串与ASCII码之间的转换:ord(‘323')将字符串转为ASCII码,chr(23)将ASCII码转换为字符串
字符串方法
修改字符串:通过合并+和分片[:]来修改,另一种是通过字符串的方法来修改。replace(‘goal','str')把字符串中的'goal'替换成'str'。find(‘index')返回字符串'index'开始的索引。list(‘sds')将字符串'sds'转换成列表['s','d','s'],这就变成了可变对象类型,可以直接对其进行多次修改,再调用”.join(列表)转换成字符串方法这比上面多次合并或切片效率要高。
文本解析:split(”)方法可以将文本切割成列表。
其他方法:rstrip()方法清除每行末尾空白,endswith(‘w')判断是否以'w'结尾和startswith(‘t')是否以't'开头。
字符串不支持模式,需要使用Python的re标准库模块。
字符串格式化
Python支持在字符串放入%d,%s来实现类型替换,类似于C的printf。在字符串后面添加% 字符串 实现指定字符串替换,多个字符串要用()括起来。
基于字典的字符格式化
插入字符串的不再是固定的%d,%s而是%(字典的键)。替换的就是字典的值,这样有一个好处就是能把整个字符串中的对应字典键的字符串都替换成字典键对应的值。
字符串格式化调用方法
前面的都是通过表达式来进行字符串格式化。这里是通过字符串的方法进行格式化。这就和Java的占位符差不多了,template='{0},{1},{2}',template.format('s','d','s')来进行格式化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27