京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“大数据”时代企业面临着三大严峻现实挑战
所谓的“大数据”有两个方面的内涵——海量和非结构化。这并非一个很突然的变化,更不是一个很新鲜的趋势,那它究竟意味着什么?答案是——机遇。一方面,对于企业是一种机遇。企业可以基于现有的大量的数据、海量数据进行分析,并利用这些数据产生效益。另一方面,对一些特定领域的发展来说也是机遇。如医疗等领域,有着大量的文献、化验结果、病例等等,这些信息大部分以人类语言方式记录下来,通过对这些信息的挖掘,可以辅助医生作出正确的决策。
当然,机遇与挑战并存,“大数据”对于企业来说也是如此。在谈如何帮助中小企业应战“大数据”时代之前,首先需要了解“大数据”对于企业来说究竟意味着怎样严峻的挑战。
“大数据”时代企业面临着三大严峻现实
现实之一:海量
IDC最新数字宇宙研究报告表明,到2020年,全球数据使用量预计暴增44倍,达到35.2ZB。35ZB是什么概念?(1ZB=1024EB=1048576PB=1073741824TB,1073741824TB*35=37580963840TB),也就是说全球大概需要376亿个1TB硬盘来存储数据。
现实之二:非结构化
相对于结构化数据(即行数据,存储在数据库里,可以用二维表结构来实现的数据)而言,不方便用数据库二维逻辑表来表现的数据即称为非结构化数据,包括所有格式的办公文档、文本、图片、XML、HTML、各类报表、图像和音频/视频信息等等。
据统计,企业中20%的数据是结构化的,80%是非结构化或半结构化的。当今世界结构化数据增长率大概是32%,而非结构化数据增长则是63%,至2012年,非结构化数据占有比例将达到互联网整个数据量的75%以上。
现实之三:实时处理
一项对全球CIO调查得出的结论表明:“通过对企业界搜集的大量数据进行实时分析,并从中获得启示,进而将这些启示转化为自身的竞争优势,对当今企业来说至关重要。”
某证券公司的CIO在介绍公司对于数据实时处理的需求时曾经表示,上亿条数据的分析要在5秒钟内完成。
“大数据”来袭!中小企业如何应战?
如同第二次工业革命中的电力和第三次工业革命中的互联网一样,大数据和云计算并不是一种新兴的行业,而是各行各业在社会转型的过程中为了实现其目标而使用的一种科学方法和技术手段。在即将到来的第四次工业革命中,大数据和云计算并不是企业转型的最终目的地,而是智能化社会中万物生长不可或缺的阳光。
每个人每天都在产生大量数据,云计算正是数据从量变产生质变的过程中应运而生的解决方案。在大数据时代里,很多有代表性的企业都为云概念的形成起到了推波助澜的作用,比如苹果和谷歌,然而,仅有理论是远远不够的。云对于个人或者企业来说,并不只是一个虚无缥缈的大硬盘,而是能够产生财富的聚宝盆,云计算就是盘活聚宝盆里每一个数字的时代利器。
对于企业而言,将服务器置于云端不仅仅节约了占地面积和维护成本,还为企业提供了更好的管理渠道和经营模式。微软公司的首席执行官史蒂夫·鲍尔默曾大胆预测:“受云计算冲击,5年后企业内部服务器将完全消失。在企业自身管理的服务器上保存数据或是实施事务(Transaction)的企业将消失。几乎所有的事务和应用软件以及系统管理功能将通过互联网的云计算运行。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05