京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“大数据”时代企业面临着三大严峻现实挑战
所谓的“大数据”有两个方面的内涵——海量和非结构化。这并非一个很突然的变化,更不是一个很新鲜的趋势,那它究竟意味着什么?答案是——机遇。一方面,对于企业是一种机遇。企业可以基于现有的大量的数据、海量数据进行分析,并利用这些数据产生效益。另一方面,对一些特定领域的发展来说也是机遇。如医疗等领域,有着大量的文献、化验结果、病例等等,这些信息大部分以人类语言方式记录下来,通过对这些信息的挖掘,可以辅助医生作出正确的决策。
当然,机遇与挑战并存,“大数据”对于企业来说也是如此。在谈如何帮助中小企业应战“大数据”时代之前,首先需要了解“大数据”对于企业来说究竟意味着怎样严峻的挑战。
“大数据”时代企业面临着三大严峻现实
现实之一:海量
IDC最新数字宇宙研究报告表明,到2020年,全球数据使用量预计暴增44倍,达到35.2ZB。35ZB是什么概念?(1ZB=1024EB=1048576PB=1073741824TB,1073741824TB*35=37580963840TB),也就是说全球大概需要376亿个1TB硬盘来存储数据。
现实之二:非结构化
相对于结构化数据(即行数据,存储在数据库里,可以用二维表结构来实现的数据)而言,不方便用数据库二维逻辑表来表现的数据即称为非结构化数据,包括所有格式的办公文档、文本、图片、XML、HTML、各类报表、图像和音频/视频信息等等。
据统计,企业中20%的数据是结构化的,80%是非结构化或半结构化的。当今世界结构化数据增长率大概是32%,而非结构化数据增长则是63%,至2012年,非结构化数据占有比例将达到互联网整个数据量的75%以上。
现实之三:实时处理
一项对全球CIO调查得出的结论表明:“通过对企业界搜集的大量数据进行实时分析,并从中获得启示,进而将这些启示转化为自身的竞争优势,对当今企业来说至关重要。”
某证券公司的CIO在介绍公司对于数据实时处理的需求时曾经表示,上亿条数据的分析要在5秒钟内完成。
“大数据”来袭!中小企业如何应战?
如同第二次工业革命中的电力和第三次工业革命中的互联网一样,大数据和云计算并不是一种新兴的行业,而是各行各业在社会转型的过程中为了实现其目标而使用的一种科学方法和技术手段。在即将到来的第四次工业革命中,大数据和云计算并不是企业转型的最终目的地,而是智能化社会中万物生长不可或缺的阳光。
每个人每天都在产生大量数据,云计算正是数据从量变产生质变的过程中应运而生的解决方案。在大数据时代里,很多有代表性的企业都为云概念的形成起到了推波助澜的作用,比如苹果和谷歌,然而,仅有理论是远远不够的。云对于个人或者企业来说,并不只是一个虚无缥缈的大硬盘,而是能够产生财富的聚宝盆,云计算就是盘活聚宝盆里每一个数字的时代利器。
对于企业而言,将服务器置于云端不仅仅节约了占地面积和维护成本,还为企业提供了更好的管理渠道和经营模式。微软公司的首席执行官史蒂夫·鲍尔默曾大胆预测:“受云计算冲击,5年后企业内部服务器将完全消失。在企业自身管理的服务器上保存数据或是实施事务(Transaction)的企业将消失。几乎所有的事务和应用软件以及系统管理功能将通过互联网的云计算运行。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15